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BY J. J. KOHN 

1. The problem. First we describe the local problem. Let Lx , . . . , Lm be 
vector fields defined in a neighborhood U of the origin in Rn by the expres­
sions : 

(1.1) L f c = Z a i ^ — ' fc=l,...,m, 
j= i Cxj 

where the a{ are infinitely differentiate complex-valued functions on U. 
The local problem is to "solve" the equations 

(1.2) Lku = fk9 k = l,. . . ,m. 

That is, given functions fl9 ...,fm we wish to find conditions for the exist­
ence of a function u satisfying (1.2); further we wish to describe the set of 
functions satisfying (1.2) and also their dependence on the fk, especially 
with respect to regularity properties. First consider the homogeneous case 
when fk = 0, i.e., 

(1.3) Lku = 0, k = 1,. . . , m. 

Any function u satisfying all the above equations must also satisfy the 
equations 
(1.4) [Lk9 Lh]u = LkLhu - LhLku = 0. 

Thus it is reasonable to assume that the space spanned by the vector 
fields Lu..., Lm is closed under the bracket operation. 

Condition A. This condition is satisfied if 

(1.5) [Lk,IJ = I 4 ^ 
j 

where the a^6C°°((7). 
From (1.2) we obtain 

[Lk,Lh]u = Lkfh -LJk 

and hence (1.5) yields 
(1.6) Lkfh - Lhfk = X a{hfj, \^k<h^m. 

1 Somewhat amplified version of the lecture presented at the 673rd meeting of the American 
Mathematical Society in New York City on March 28,1970; received by the editors June 28, 
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Thus we have established the following lemma. 
1.7 LEMMA. If Lu . . . , Lm satisfy condition A and if there exists a function 

u satisfying (1.2) then fi,...9fm satisfy the system (1.6). 

Another obvious necessary condition is given in the following. 

1.8 LEMMA. If (1.2) is satisfied in U and if PeU and 

£cVfc(P) = 0, forj= l , . . . ,n, 
k 

with ck eC then it follows that 

(1.9) Zcyk(P) = o. 

We will assume the following condition which implies (1.9). 
Condition B. This condition is satisfied if Li9..., Lm are linearly inde­

pendent at each point, i.e. if the matrix a{ is of rank m at each point. 
As will be seen later condition B is extremely restrictive but as yet it has 

not been possible to weaken it. 
The global problem may be formulated as follows. Let CT(U) denote the 

complexified tangent bundle over U and let L be a complex subbundle of 
CT(U) with fiber of complex dimension m. Condition A can now be 
replaced by requiring that if L, L' eT(L, V) (i.e. sections of L over V c U) 
then 

(1.10) [L,L']er(L,K). 

We denote by L* the dual bundle of L and for every open F c [/we define 
the map 

^:C°°(K)-r(Z,*, V) 

if ue C°°(F), <2)u is determined by setting 

(1.11) <®w,L> = L(w) 

for all LeT(L9 V) where < , > denotes the pairings between the fibers of/,* 
andL. Equation (1.2) can now be written as follows: 

(1.12) 2u = f 

where u e C°°(l/) and ƒ G T(L*, U). Choosing Ll9..., Lm to be a local basis 
for T(L, U) and co1,..., of1 to be the dual bases of T(L*, U\ it is clear that 
(1.2) expresses (1.12) in terms of this local basis. The advantage of the 
above formulation is that it makes sense whenever U is a C00 manifold. In 
order to reformulate Lemma 1.7 in those terms, letL*A L* denote the 
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skew symmetric product of L* with itself. We then have the natural iso­
morphism/,* A I * « (L AL)*. Define the map ^:T(Z,*, V) ->r(L* A Z,*, V) 
by setting 

(1.13) < ^ / , L A L ' > = L«L' , ƒ » - L '«L , /> ) - <[L, !/] ,ƒ>, 

where ƒ e r (£*, K) and L, L' e T(L, F) ; the symbol < , > denotes the pairing 
between the fibers of L A L and JL* A L * . Thus we obtain the complex 

(1.14) Cg>(K) ^r(JL*, K) ^>r(L* A L * , K); 

it is easily checked that 

(1.15) 22 = 0. 

Lemma 1.7 can now be reformulated as follows. A necessary condition 
for the existence of u satisfying (1.12) is 

(1.16) Q)f = 0. 

2. Examples. The following are examples of manifolds M on which we 
distinguish a subbundle L of the complexified tangent bundle CT9 which 
satisfies conditions A and B and we discuss the corresponding local and 
global problems of solving (1.12). 

(I) M is any differentiate manifold and L = CT. In this case 3> is the 
exterior derivative (usually denoted by d). The solution of the local prob­
lem is classical, usually called the Poincare lemma, and the global problem 
can be analyzed by means of elliptic boundary-value problems (see [2] and 
[3]). 

(II) M is a complex manifold and let L be the bundle of tangent vectors 
of type (0,1) (i.e. locally a section of L is of the form J V d/dzj where 
zl9..., zn are holomorphic local coordinates). In this example the operator 
3) is usually denoted by d and the local solution is given by the so-called 
Dolbeault lemma. The global problem for compact manifolds can easily be 
reduced to determined elliptic systems ; this is the so-called Hodge theory 
(see for example [12]). On a manifold with a smooth boundary the global 
problem is in general not solvable in the sense that the range of d is not 
closed in any of the topologies of interest ; however, if certain conditions 
are imposed on the boundary the problem is solvable (see [13] and [7]). 
Some important questions about the dependence of the solution on ƒ in 
Holder norms still remain unanswered although great progress in this area 
has been made recently (see [11]). 

(III) M is a differentiable manifold and L has the property that L = L 
(i.e. locally each Lk = Yfi{dldxj is a linear combination of Ll,...,Ln). 
Then locally by the classical Frobenius theorem we can find local coordi­
nates x i , . . . , xn such that a local basis for the sections of L over a coordinate 
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neighborhood is given by d/dxl9..., d/dxm and so the local problem can be 
settled by an easy adaptation of the solution of example (I). However the 
global problem is not stable and will not be considered here (see [28]). 

(IV) Let Mx and M2 be manifolds with Lx and L2 the corresponding sub-
bundles of CT(MX) and CT(M2) satisfying conditions A and B. Let 
M = Mt x M2 and denote by rç :M -> Mt, i = 1,2, the projection maps ; 
these induce maps nf : CT(M) -• CT(Mt). Now we define L by 

(2.1) L= {LeCT{M)\nfLeLh i = 1,2}. 

This L then satisfies conditions A and B. 
(V) Let M be a closed differentiable submanifold of a manifold Mx. 

Suppose that Lx a CTiM^) satisfies A and B. The identity map I:M -• Mx 

induces the map I*:CT(M) -> CT(MX) and we define 

(2.2) L= {Le CT(M)\I*L e CT{MX)}. 

Now if we assume that L is a bundle (i.e. that the dimension of the fiber is 
constant) then we obtain another example. We say that L is the restriction 
of Li to M. 

The case, where M is a closed submanifold of a complex manifold Mx 

and Li is as in (II), has been studied extensively (see [20], [18], [29] and [24]). 
In fact if we take Mx = C2 and 

M = {(z1,z2)eC|Rez2 = |z1|2}, 

setting t = Im z2 and z = zx we find that z, t are local coordinates in the 
real three-dimensional manifold M. In terms of these coordinates the 
equation (1.12) becomes 

This is the famous equation of H. Lewy which in general has no solution 
(see [21]). The discovery of this equation has led to several important 
developments in partial differential equations (see [9] and [26]). The case 
where M = {zeC"\ \z\ = 1} has been studied in great detail by G. B. 
Folland (see [4]). 

Condition C. We say that the subbundle L cz CT satisfies this condition 
if L A L is also a subbundle, i.e. if the fibers are of constant dimension. 

It is now natural to ask whether any L c CT satisfying conditions A, B 
and C can be realized locally performing the constructions in IV and V on 
the examples II and III. In case L is one dimensional this reduces to a prob­
lem of H. Lewy ; namely, given a single nonvanishing complex vector field 
L do there exist nontrivial solutions of Lu = 0. In case L is real analytic 
(i.e. there exist coordinates such that the real and imaginary parts of the 
a{ in (1.1) are analytic) the conjecture is answered affirmatively by the 
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Cauchy-Kowalevsky method (see [1] where it is also shown that if coordi­
nates xl9..., xn are chosen so that d/dxl9..., d/dxp span the local sections 
oîLnL then it suffices to assume analyticity in the variables xp+l9..., xn). 
Another example in which the above conjecture is established is the case 
when the sections of L + L are closed under the Lie bracket, the result is 
known as the Nirenberg-Frobenius theorem (see [23], [25] and [8]). 

3. The Laplacian and the energy form. We will assume that L <z CT(M) 
satisfies conditions A, B and C. Denote by n the dimension of M, m the 
fiber dimension of L and p the fiber dimension of L n L. Let L0 be a sub-
bundle of L such that 

(3.1) L = L0®LnL 

and let TV be a subbundle of CT such that 

(3.2) CT= N®{L+L\ 

Then we have 

(3.3) CT= N®L0®L0® LnL. 

Choose hermitian metrics on N9 L0 and Lr\L\ we define a hermitian 
metric on L0 by setting 

(3.4) <w, i?> = <ü,£> 

where w, v are tangent vectors (at the same point) lying in L0 ; thus U,veL0 

and so the right-hand side has meaning. Now we define a hermitian metric 
on CT by making the direct sum in (3.3) orthogonal—this induces a 
hermitian metric on CT*, on L* and onL* AL*. Assume that M has a 
volume element dV. We define the L2-inner product on the sections of 
these bundles by setting 

(3.5) ((p,*A) = ƒ<<?, *lt>dV. 
M 

Thus we have the adjoint of (1.14) (with V = M) which is the differential 
complex 

(3.6) T(L* A Z*, M) n r(L*, M) n C™{M) 

where the ̂ * are the formal adjoints of the Q) determined by requiring that 

(3.7) (®N>,tfO = fo®lW 

where (peT(L* A L * , M ) and ^er(L*,M) and ^ has compact support. 
The map ££* :T(L*, M) -• C°°(M) is defined similarly and thus we have 

(3.8) (^*)2 = 0. 
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We now define the map $£ S(L*, M) -+T{L *, M) by setting 

(3.9) J5f<p = @®*cp + Q)*@q). 

S£ is called the Laplacian of the complex (1.14), in the case of example (I) 
this is the usual Laplace-Beltrami operator on 1-forms. 

Suppose that M is compact. Now observe that given feT(L*, M) if we 
wish to solve the equation (1.12), then ƒ must satisfy not only (1.16) but 
also, ƒ has to be orthogonal to Jf {$)*), the null space of ®*. Since if 
ij/ e Jf(Q)*) we have 

(3.10) (ƒ, i//) = {®u, i/0 = (w, ®*\i/) = 0. 

We denote by Jf the null space of 5£. It then follows that 

(3.11) J f = {(per(L*,M)|^(p = 0 a n d ® > = 0} 

since 

(3.12) (2><p,cp) = \\®cp\\2 + \\@*<p\\2, 

and we obtain : 

3.13 LEMMA. Given f e T(M, L*) if there exists u e C^iM) satisfying (1.12) 
then ƒ satisfies (1.16) and is orthogonal to #£. Furthermore the conditions 
(1.16) and orthogonality to J f are equivalent to (1.16) and orthogonality to 

Consider the equation 

(3.14) <£cp = ƒ, 

where cpje T(M,L*) it is clear that ƒ 1 Jf, as in (3.10), since J27* = JSf. 

3.15 PROPOSITION. Suppose that for every ƒ e T(M, L*) wiY/i ƒ 1 Jf t/iere 
exfsto a<peT(MrZ,*) satisfying (3.14), f/ien /or ei;ery ƒ w/w'c/i satisfies the 
necessary conditions given in 3.13 t/zere exists a ueCco(M) such that 
9u = f. 

PROOF. We have ƒ 1 J f and ^ / = 0, furthermore 

ƒ = ^ * < p + ®*3)q). 

We will show that 3>*@}q> = 0 and then setting u = @*q> will complete 
the proof. Since @f = 0 and Q)1 = 0 we conclude that 

®®*9q> = 0. 

Taking inner products into ^<p, 

( ® ^ * ^ < P , ^ < P ) = \\@*@q>\\2 = o 

and hence <3*3>(p — 0 as required. 
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Thus the global problem of solving the over-determined system (1.12) 
on a compact manifold is reduced to solving the determined system (3.14). 
To study the operator J5f we introduce the hermitian form Q:T(L*9 M) 
x T ( L * , M ) - C defined by 

(3.16) Q(<p9 ij/) = (&q>9 9i/t) + (9*q>, &*i//) + (<p, $). 

There is a general theorem which asserts that if Q is compact with respect 
to L2 (i.e. if a sequence cpv e r(L*9 M) is bounded in the sense Q((pv9 (pv) < C 
then it has a subsequence that converges in L2), then the space Jf is finite 
dimensional and the system (3.14) has a unique solution in T(L*9 M) which 
is orthogonal to Jf7 (see [16]). An example of W. Sweeney (see [31]) shows 
that there are differential complexes for which the energy form is not com­
pact and whose Laplacian, nevertheless, can be inverted. Here, however, 
we will discuss the problem of finding circumstances under which Q is 
compact. 

4. Hypoellipticity and the case of co-dimension one. To show that Q 
is compact (and that J£? is hypoelliptic) it suffices to show that every point 
of M has a neighborhood U on which there are vector fields Zl9...9Zq 

such that the Lie algebra generated by these equals T{CT9 U) and that there 
exists C > 0 such that 

(4.1) II|Z^JI2^CÖfo<P) 
r,s 

for all q> eT(L*9 U) with compact support, here q>s denote the components 
of cp relative to some fixed local basis of T(L*, U). The special case where 
the Z's and single Lie brackets span all tangent vector fields was proved by 
the author (see [14]) ; the general case was proved by Hörmander (see [10], 
a proof based on pseudo-differential operators was found independently 
by Radkevitch [27] and the author [17]). 

Let L l 5 . . . , Lm_p be a local orthonormal basis of T(L0, U\ where U is a 
small neighborhood in M, and let Al9...9Ap and Nl9..., Nn+p-2m be 
local orthogonal bases of T{L nL9 U) and T(N9U) respectively. Thus 
Ll9..., Lm_p9 Ll9..., Lm_p, Al9...9 Ap9 Nl9..., Nn+p_2m is a local basis 
for the tangent vector fields on U. Let co',.. ,9œ

m~p
9 œ\... ,c5m~p, 

a1 , . . . , ap, rj'9...9 rjn+p~2m be the corresponding local basis of the 1-forms. 
Then if cp 6T(L*, U) we can write 

m-p p 

(4.2) cp = X <PflJ + Z <Pj+m-pXj 

and we have 
m-p p 

(4 3) 9u= Yu (LjU)coj + X (AjU)ccj. 
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Further a simple calculation shows that if 
m— 1 p 

J?<p= £ (<?cp)kcok + £ (J2»k+m_pa* 
fc=l fc=l 

then 

( m-p p \ m-p 

+ combinations of the L, L and A, 

when k = 1,... ,ro — p, 

and 

(m-p p \ 

; = i ; = i / 

+ combinations of the L, L and A9 

when fe = m — p + 1,.. . , m. 

Note that the dimension of the fiber of L + L is 2m — p and that the dimen­
sion of the fiber of TV equals the co-dimension of L+ L equals n + p — 2m. 
Suppose that the co-dimension is one. We choose Nx = N such that 
N = —N. Then we have 

(4.5) [Lt,Lk] = cikN + combinations of the L, L and A. 

In the case where the L is obtained on a submanifold of a complex mani­
fold of real co-dimension one the (cik) is the Levi-form. 

4.6 THEOREM. If the bundle L c CT satisfies conditions A, B and C and if 
the fibers of L + L have co-dimension one, then the following are equivalent : 
(a) each point has a neighborhood U such that there exist C > 0 such that 

E I M J I 2 + ZllL^II2 + ZIM^*H2 ^ CQ(q,,cp) 
j>k j,k j,k 

for all cp G T(L*, U) with compact support ; and (b) m ^ 2 am/ t/ie matrix (cik) 
has either all eigenvalues of the same sign or has two pairs of eigenvalues of 
opposite sign. 

The proof of this theorem can be obtained by an approximate "uncoup­
ling" of the above system. For a fixed point P e M we choose the orthogonal 
local basis Li9..., Lm_p such that cik(P) = ôikXk, where the (cik) are given 
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by (4.5). Now we define the differential operators Pfc:C°°(t7)-> C°°((7), 
k = 1,.. .,m — p, by 

( m-p _ p \ 

£ LJLJ+ £ A2\u + XkNu. 
j=i j = i / 

4.8 THEOREM. The following are equivalent: 
(a) There exists C > 0 such that 

( m —p m — p p \2 

£ \\Lju\\2 + X HZ ÎI2 + X \\Aju\\) 
j=i j=i j = i / 

forallueCg(U). 
(b) Either Xk =£ 0 and f/zere is another eigenvalue of the same sign or 

Xk = 0 and f/iere are two nonzero eigenvalues of opposite sign. 
It then follows that if U is sufficiently small and if (4.9) holds for 

k = 1, . . . , m — p then (4.7) also holds. 
For the proof of this see [15]. 
The imaginary part of the first order terms in the operators Pk plays a 

vital role here, so that they do not fall under the theory developed by 
Hörmander and Radkevitch (see [10] and [27]) in which the subprincipal 
part is real. A similar phenomenon as that presented by the operators Pk is 
found in the work of Grushin (see [6]). He considers special types of 
equations in Rn with polynomial coefficients which are elliptic outside of a 
linear subspace. One of his examples is as follows : 
(4.10) PM = ^ + *"£^ + I 0 ^ 

where 6 e C. In [6] the following is proved : 

4.11 PROPOSITION. P is hypoelliptic if and only if either Im 9 j* 0 or Im 9 
= 0 and \9\ < 1 when n > 2 or Im 9 = 0 and 9 does not equal an odd integer. 

Using the methods above, part of this proposition can be generalized as 
follows (see [15]). 

4.12 PROPOSITION. If Xu..., Xk are real vector fields defined on a neigh­
borhood U c Rn and if the {Xj} and [Xi9Xj] span all the tangent vector 
fields then the operator 

(4.13) Pu = - X Xfu + W[XuX2]u + cu 

where 9eCand ce C°°(L/) is hypoelliptic whenever Im 9 ^ 0 and whenever 
Im 9 = 0 and \9\ < 1. In fact these conditions are necessary and sufficient 
for the estimate 
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(4.14) RQ(Pu,u) + \\u\\2^c £ \\XjU\\2 

for all u G CQ(U) with support in a fixed compact subset of U. 

5. The local problem. The local problem is considerably more difficult 
than the global one (on compact manifolds). This can be seen already in the 
case of integrable almost complex structure where global existence is 
obtained from standard elliptic theory, but the local theorem depends on 
the Newlander-Nirenberg theorem. Now there are three distinct proofs of 
the Newlander-Nirenberg theorem, the original proof (see [23]) and the 
proofs given in [13] and [22]. The original proof depends heavily on the 
Cauchy formula so it seems more promising to generalize the latter two. To 
generalize the proofs of [13] one needs to understand the restriction of L to 
the boundary—this presents two difficulties : first that the higher co-dimen­
sion case is not yet understood, and second that the restriction will in 
general not satisfy condition B. There is some hope that these difficulties 
can be overcome, possibly by developing methods analogous to those in 
[19]. Malgrange 's method of proof depends on the fact that solutions of 
analytic elliptic equations are analytic ; it is possible that this is also true 
for the corresponding equations obtained from our problems. Recent 
results of Treves (see [32]) indicate that this may be so. 

In conclusion we remark that very general overdetermined systems can 
be reduced, using the Spencer resolution (see [30]) to the ones discussed 
here (see also [5]). 
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