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A general version of Plateau's problem may be formulated as follows: 
Determine a surface of least area which has a prescribed topological 

type and which is bounded by a configuration of several fixed contours, 
supporting surfaces, and movable threads of given lengths. 

Soap laminae spanning frames with movable contours—experi­
mentally realized by hairs or thin threads—have been described, 
among other places, in [2, p. 48], [3, p. 174], [8, p. 584], [13, pp. 
7, 8, 20]. As is well known, the existence of a solution hinges on cer­
tain metric-geometric conditions which must be satisfied by the 
bounding configuration. Otherwise the minimizing sequences on 
which the existence proof is based do not converge or, if they do, con­
verge only to degenerate limit structures—disconnected surfaces of 
lower topological types or partly one-dimensional formations. There 
are interesting examples illustrating these contingencies. In a number 
of cases, however, existence proofs are feasible by an extension of the 
classical methods, leading to a solution surface whose position vector 
r(w, v) appears as function of isothermal parameters. 

Today the boundary behavior of the solution surface is fully stud­
ied for the fixed contours and is satisfactorily understood for the free 
boundaries, i.e., the boundary portions on supporting manifolds. 
Almost nothing, however, is known so far for the moveable contours. 
In [ i l ] a theorem had been proved provided certain regularity as­
sumptions dictated by intuition could be taken for granted: 

THEOREM. The movable parts of the boundary must be curves of 
constant space curvature. On the solution surface itself they are asymp­
totic lines of constant geodesic curvature. 

As was pointed out in [ l l ] , there is an obvious and challenging 
connection to the isoperimetric problem on surfaces. 

I t is the purpose of this announcement to report on new results 
concerning the regularity of the moveable boundaries which justify 
the intuitive assumptions mentioned above. Details and full proofs 
will appear elsewhere. 

I t will suffice to consider the concrete case of a frame which consists 
of a fixed rectifiable Jordan arc Ti and a moveable arc T2 or prescribed 
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length A (smaller than the length l\ of Ti) having its end points in 
common with IY 

Denote by P the semidisc {«, v; u2+v2<l, v>0} and let 
5 = {r = r(w, v) ; (u, v) £ P} be a surface of least area—more precisely, 
a surface minimizing the value of Dirichlet's integral D[x] 
— hffp (*«+*») du dv—bounded by this frame. I t is assumed here 
that the position vector of 5 possesses the following properties : 

(i) x(u, v) belongs to class C°(P)r\C2(P) and satisfies in P the 
relations Ar = o, r« = t j , xuxv = 0. 

(ii) x(uf v) provides a topological mapping of the boundary portion 
diP= {u} v; u2+v2 = l, v^O} onto the arc Ti. 

(iii) The vector x(u, 0) is of bounded variation for — 1 
^ u ^ 1 and ft\ \dx(u, 0) | = k, i.e., the boundary portion 
d 2 P = {u, v\ — l g ^ ^ l , v = 0} is mapped onto a rectifiable arc, the 
curve T2, of length l2. 

From t% < (\ it can then be inferred that D [r] > 0. 
I t should be stressed once more that the existence proof which leads 

to a solution surface having the above properties is possible only in 
certain situations. 

For 0 O < l l e t P r b e the semidisc {u, v; u2+v2<r2
y Ü > 0 } . We now 

state the theorem:2 

THEOREM. The vector x(u, v) belongs to class C2tfi(Pr) for every r, 
0 <r < 1. Here j8=/3(r) is an exponent between zero and one depending on 
r. The curve {r = r(w, 0); —1 <u<\ } is a regular C2-curve of constant 
space curvature. 

Denote by x*(u, v) the harmonic vector conjugate to x(u, v). From 
the rectifiability of the boundary of S it follows that v*(u, v) is con­
tinuous in P. As a matter of fact, by a theorem of M. Tsuji [12], the 
vectors x(u, v) and x*(u, v) are absolutely continuous on dP satisfying 
the relations rM = r„, xv= —xu almost everywhere. In particular, the 
derivative xu(u, 0) exists almost everywhere on d2P and (% 
~f-i \*u(u, 0) | du. These facts are essential for the derivations to 
follow. 

Consider now two vectors t)(u, v) and i(u, v) of class Cl(P) which 
vanish along d\P. Introducing two small parameters e and ô form the 
comparison surface 

S = {r=r(w, v; e, 8) ss r(w, v) + €^(w, v) + ôj(«, v) ; (u, v) EP} 

and set /(e, 8)=ft{ \xu(u, 0; e, 5)| du and d(e, 8)=D[x], A careful 
2 In a forthcoming paper [7] which has been seen by the author as a preprint. 

S. Hildebrandt proves that the vector x(u, v) belongs to class C0,1/2(Pr). 
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analysis shows that, despite the possibly existing zeros of | r„(«, 0) j , 

/(«, S) = (2 + c I —:— . ^ 

J _ ! | tu(«, 0 ) | 

J _ i j r„(«, 0 ) | 

r*(«, 0)^u(«, 0) J^ 

- 5 ƒ t*(«, 0)8.(1», 0) <te + 0(e2 + Ö2). 

Having established the differentiability of the functions /(e, S) and 
d(e, S) and realizing that the vector %(u, v) can be chosen in such a 
way that W(0, 0)/<9ô^0, the classical derivation of the multiplier 
rule can be employed (see e.g. [l, pp. 457-465, 542-553, 671]). 
Since d(e, S) must have a stationary value for e = 5 = 0 subject to the 
subsidiary condition ^(e, 5) = /2, we conclude that 

/

+i r x (u 0) 1 

**(«, o) + x . , ' , M*, o) ^ - 0. 
-1 L I rtt(«, 0) I J 

Here X is a constant multiplier. From X = 0 the impossible relation 
|r*(w, 0)\=\vu(u, 0 ) | = 0 would follow. 

Set K = 1 / X . Without loss of generality we may assume that K>0. 

As tj(u, v) was an arbitrary vector, we find 

tu(u9 0) 
(*) -: r- = — KX*(U, 0) + c for almost all u. 

I r«(«, 0) I 
c is a constant vector. 

d2P is now parametrized by the arc length s = s(u) = f"i \ vu(u, 0) | du 
of r2 . s(u) is a strictly increasing absolutely continuous function. Its 
inverse function u—u(s) has the same properties. 

Setting x°(s) =v(u(s)f 0) and t°(s) = —T*(u(s), 0 )+c it is seen that 

r°(s) = r ( - l , 0) + f ' Vu(u, 0) du = r ( - l , 0) + f t°(s) ds. 

Furthermore, since |r*(w, 0) | = |rtt(w, 0) | almost everywhere, 

J* w(«2) ^ I 

Vu(u,0)du\£ K\S*-SI\ 
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so that the vector t°(s) satisfies a Lipschitz condition. From this it 
follows that r 2 = {î = ï°(^)î O g s ^ A } is a regular curve of class C1»1. 
The results of [lO] now tell us that the vector $(u, v) belongs to class 
Clta(Pr) for every r, 0 O < l , and every a, 0 < a < l . 

Assume that icu(u0) 0 ) = o for a value u0 in —1<UQ<1. One can 
convince oneself that the asymptotic expansion, given in [10, pp. 
318, 329-332] and [5, p. 103], whose proof is based on a theorem of 
P. Hartman and A. Wintner [4, Theorems 1, 2 and especially pp. 
455-458], can be derived already for a bounding contour of class 
C1,1. Thus, near the point (#o, 0), 

Vu(u, v) — iTv(u, v) = (a — ib)(w — w0)
p + R( \ w — w0 | ). 

Here w = u+iv, Wo = Uo. a and b are nonvanishing real vectors satisfy­
ing the relations ct2 = b2, ab=0, and p is an integer not less than one. 
The remainder term R(\ w—w0\ ) is of the order o(\ w—-WQ\ P ) . A more 
careful scrutiny of the representation formula of Hartman and 
Wintner reveals that R(\w —w0\) =0(|ze;—Wol^lloglw— ^o||). We 
shall use here that R{\w — w0\) =O(\w — w0\

p+y) for any 7, 0 < y < l . 
I t is now obvious that the branch points on dj? are isolated and 

that (*) holds for all u in —1< u < 1. Repeatedly applying the results 
of [lO] it then follows from (*) that %(u> v) is of class C°° in any 
closed subdomain of Pr which does not contain the branch points on 
d2P. Moreover, from the asymptotic expansion and from the con­
tinuity of t°(s) it is seen that the exponent p must be an even number 
so that the vector n°(s) =t°'(s)/K = xv(u(s), 0)/\vu(u(s), 0) | is con­
tinuous for 0 O < / 2 . 

At this point differential geometric considerations have to be 
brought into play. We set E(u, v) =^(w, v) and denote by %(u, v) the 
normal vector of S and by L(u, v), M(u, v), N(u, v) the coefficients 
of the second fundamental form. 

A comparison, using (*) and the Gauss equations for the second 
derivatives of the position vector %(u, v), shows that Ev(u> 0) 
= — 2/c£3/2(w, 0) and L(u, 0 ) = 0 in any ^-interval on d2P between 
branch points. While n°(s) is the principal normal vector of the 
curve T2, its binormal vector h°(s) is given by %(u(s), 0) and is also 
continuous for 0 < s < / 2 . By Frenet's formulas we have tx°'(s) 
= — Kt°(s) +<r(s)h°(s). The torsion <r(s) of T2 is seen to be equal to the 
expression M(u(s), 0)/E(u(s)f 0). 

From the Codazzi equations it follows that L(u, v) —iM{u> v) is in 
P an analytic function g(w) of the complex variable w = u+iv. Since 
L(ut 0) = 0 in all points of d2P with the exception of isolated points, 
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we see that g(w) can be extended as a single valued analytic function 
in the disc \w\ < 1 punctured at the branch points on d2P. 

Applying the theorem of Gauss-Bonnet, as in [6, p. 233], [9, p. 
236], it follows that the total curvature 

ƒ ƒ \K\ do-f f \g(w) du dv 

pr J J pr E(u, v) 

must be finite. 
Consider now a branch point on d2P> say the point (0, 0), so that 

lu(uy v)~-i%v(u, v) = (ct—ib)wp+0(\w\ p+y) near this point. From the 
finiteness of the total curvature it is seen, that g(w) has no essential 
singularity at w==0 and has an expansion g(w) = cqw

g+cq+iwq+1 + • • • , 
cq5*0, where ql^p. Thus 

M(u(s),0) . ( icq ) 
*(*) ds = w / N ^ xu(u(s), 0) | du = <-.—r u

q-P + • • • > du, 
E(u(s),0) V J c t J ; 

and the expression in the brackets remains finite. Then, for 0<ui<u2 

and si = s (u%), s2 = -s (u2), 

v°"(s2) - r 0 " ^ ) 

ƒ» «2 

n°'(s)ds 

«= - ie2 f V(s ) ds + K \ *<r(s)b°(s) ds 

= - K2[X°(S2) - X°(Sl)] + y - f U«-P[l + • • • ]*(«, 0) du, 
M J « l 

so that | f"(s2) — f"(si) | ^ Ci {152—Sx | +1 w2 — ux \ }. Using the inequality 
( I 4 + 1 + 7 - « ? + 1 + 7 ) / ( I 4 I + 1 - « Î + 1 ) â (p + l+y)t$/(p + l), it is seen from 
the asymptotic expansion that s2—Si^Q2(ulJf"l — u\'lrl), C2>0, if u2 is 
sufficiently small. From this it follows that u2—ui^Qz(s2—Si)1Kp+l) 

and therefore | ï ° " ( * ) - ï ° " ( * i ) | ^<B4 |*2-Si|1,(p+1). 
I t is now possible to conclude that the vector $0"(s) satisfies a 

Holder condition in every closed subinterval of 0<s<(2, with an ex­
ponent depending on the order of the branch points in this subinter­
val. Therefore, the portion of T2 corresponding to the interval | u\ Sr 
is a curve of class C2tfi where j8=j8(r) is a number depending on r. 
By [lO] the vector %(u, v) likewise is of class C2^(Pr). 

Our theorem is proved. The analytic character of the movable 
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contours and the absence of branch points on these contours will be 
the subject of a subsequent investigation. 
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