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BY S E R G E L A N G 

ABSTRACT. This is a survey article on the state of knowledge 
concerning the transcendence and algebraic independence of vari­
ous numbers, obtained as values of certain classical functions, 
mostly of exponential and logarithmic type. The diophantine ap­
proximation considerations are taken from the point of view of 
quantitative results concerning the above numbers, i.e. give an 
explicit lower bound for values P\ «i, • • • , an\, where P is a 
polynomial with integer coefficients, and «i, • • • , an are the num­
bers under consideration. The lower bound should depend on the 
degree of P , the size of its coefficients, and the numbers at. Some 
discussion is given as to what "best possible" such lower bounds 
have been or could be obtained. 

Let ƒ be a classical function (for instance exponential, elliptic, zeta, 
etc.). Starting with the rational numbers, one can construct a field 
inductively by adjoining values of ƒ with arguments in the field al­
ready obtained, taking algebraic closure, and iterating these opera­
tions (as already suggested in [48]). We may call the numbers so ob­
tained the "classical" numbers. Our point of view is that the theory of 
transcendental numbers determines which of the numbers so ob­
tained are transcendental (over the rational numbers Q). This is the 
qualitative theory. Given numbers w\, • • • , wn in this field, and a 
nonzero polynomial F(Xi, • • • , Xm) with integer coefficients, one 
then wants to give a lower bound for the absolute value 

| F(WU • • • , Wn) | , 

as a function of the degree of F, the absolute value of its coefficients 
and of course the w*. This is the quantitative theory, and we view 
diophantine approximations from this point of view in the present 
survey. (If wu • • • , wn have already been proved to be algebraically 
independent then F(wi, • • • , w^^O. Otherwise, one has to assume 
this latter condition.) Because of the present point of view, I do not 
discuss the full range of the theory of diophantine approximations 

AMS 1970 subject classifications. Primary 10F35, 10F40; Secondary 10F45, 
33A10, 33A35, 32A20, 14L10. 

Key words and phrases. Transcendental numbers, diophantine approximations, 
exponentials, logarithms, several complex variables. 

1 A survey article printed by invitation of the editors ; received by the editors 
March 12, 1971. 

Copyright © American Mathematical Society 1971 

635 



636 SERGE LANG [September 

and a large body of results are omitted which would otherwise find 
their place. 

The number of monographs on these subjects is still small. We refer 
the reader generally to Siegel [87], Gelfond [44], Schneider [80 ], and 
Lang [49] for transcendental numbers; and to Cassels [24], Khint-
chine [46], Schmidt [77] and Lang [50], for diophantine approxima­
tions. More precise references are given in the course of the report. 

The theory of transcendental numbers offers ground for research 
over a very broad spectrum of tastes. One can work on the ground 
floor of mathematics, with very little knowledge, and still prove very 
deep results, or one may wish to work in the general context of the 
parametrization of algebraic varieties by uniformizing maps, and 
formulate or prove transcendence results for such objects. I have in­
cluded a report of both types of results. The reader can always dis­
regard those aspects which he may dislike. On the other hand, solu­
tions of problems which have simple statements (e.g. Siegel's theorem 
on the finiteness of integral points on curves of genus ^ 1) require 
machinery for their proofs which is fairly elaborate, so that such 
proofs are out of the reach of those who dislike, say, abelian or auto-
morphic functions. Furthermore, the present relations with the 
theory of several complex variables are clearly becoming very fruit­
ful, and may draw the analysts into number theory, or vice versa. 

The present report attempts to cast results in fairly comprehen­
sive terms. Especially in diophantine approximations, where results 
are less extensive at present than comparable results in transcen­
dental numbers, I have attempted to tie together what I regard as 
very partial results by making conjectures. We are dealing with a 
branch of mathematics where practically any example is already a 
theorem. 

TRANSCENDENTAL NUMBERS 

1. The ordinary exponential function. The theory of transcendental 
numbers started with Hermite's proof [45] that 

(1.1) eis transcendental. 

A few years afterwards, this result was extended by Lindemann 
[56] who showed that : 

(1.2) If a is algebraic 9e 0t then ea is transcendental In particular, w 
is transcendental (because e2ri=l). 

Lindemann proved much more, namely: 
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(1.3) Jfjfafi, • • • , an are algebraic numbers linearly independent over 
the rationals, then 

eai, • • • , ean 

are algebraically independent. 

(By algebraically independent, we always mean over the rationals, 
unless otherwise specified.) 

These results were to be extended in two directions, stemming 
from the differential equation satisfied by ez, or from its addition 
theorem. They fit in the general context of determining conditions 
under which classical functions, suitably normalized, take on tran­
scendental values at algebraic points. More generally, under suitable 
conditions one expects that algebraically independent functions take 
on algebraically independent values a t a certain point, unless there is 
a "structural" reason for it being otherwise. We shall see later con­
crete examples of this. In the case of the Lindemann theorem, the 
functions are eait, i = l, • • • , n, with algebraic ce», linearly indepen­
dent over the rational numbers Q. However, proofs of algebraic inde­
pendence results are considerably more difficult at present than 
proofs for transcendence results. 

In the same line as above, we also have the classical theorem of 
Gelfond-Schneider [44], [80], [87], [49]: 

(1.4) If a, j8 are algebraic, a^l, and /3 irrational, then a? is tran­
scendental. 

This was extended in a significant way recently by Baker [ l l ] , 
who shows: 

(1.5) If a\, • • • , an are non zero algebraic numbers, multiplica-
tively independent {or equivalently, whose logarithms, together 
with 2iri, are linearly independent over the rationals), and 
/?i, • • • , ft are algebraic, and such that 1, ft, • • • , ft are 
linearly independent over the rationals, then 

a?1 • • • a?n 

is transcendental. Furthermore, the numbers 

log a x , - - - , log an 

are linearly independent over the algebraic numbers. 

We shall return to this later in connection with diophantine ap­
proximations. 
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The preceding results use the differential equation, as well as the 
addition theorem. Using only the addition theorem, one obtains the 
following statement. 

(1.6) Let j8i, j82 be complex numbers, linearly independent over Q, 
and let zj (J= 1, 2, 3) be complex numbers, also linearly inde­
pendent over Q. Then at least one of the numbers 

efiizi, etezi (j = 1 , 2 , 3 ) 

is transcendental. 

Thus for instance, if y is real and xv is algebraic for all positive 
rational X7*0, then y is rational. Although this statement was known 
to Siegel [9], I rediscovered it independently and Siegel wrote me 
once that the proof I gave in [49] apparently was the first in the 
literature. Since this proof is the simplest in the theory of transcen­
dental numbers, but also exhibits some basic features from all proofs, 
we shall summarize it below. 

In investigating values of ofi when j8 is transcendental and a is 
algebraic, there may be one algebraic a such that a? is algebraic. For 
instance, 

log 3 

By the Gelfond-Schneider theorem, log 3/log 2 is transcendental, 
and constitutes such a number j8 for which 2^ is algebraic. The previ­
ous theorem shows that there are at most two multiplicatively inde­
pendent possibilities, and conjecturally there is only one, i.e. one can 
shrink 3 to 2 in Theorem (1.6). 

The most general conjecture concerning transcendence and alge­
braic independence of values of the exponential function is due to 
Schanuel, and runs as follows. 

(1.7) Let «i, • • • , an be complex numbers, linearly independent 
over the rationals. Then the transcendence degree of the field 

Q(ah • • • , aw, eal, • • • , *•*) 

is at least n. 

For instance, this implies Lindemann's Theorem (1.3), and also 
implies the old conjecture that the logarithms of multiplicatively in­
dependent algebraic numbers are algebraically independent. (Baker's 
theorem 1.5 concerns their linear independence.) Note that it is 
unknown even if log 2 and log 3 are algebraically independent, or even 
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if (log 2) (log 3) is algebraic. I t is unknown if e+w is algebraic. The 
algebraic independence of e, T would follow from Schanuel's conjec­
ture by considering 1, 2wi, e, e2ir\ In fact, Schanuel's conjecture im­
plies a t once all other known conjectures concerning values of the 
exponential function. For instance, I had conjectured that T cannot 
lie in the field obtained by starting with the algebraic numbers, ad­
joining values of the exponential function, taking algebraic closure, 
and iterating these two operations. This follows from Schanuel's con­
jecture as follows. Let a = ( « i , • • • , an) be linearly independent 
algebraic numbers. Use vector notation, so that ea = (eal, • • • , ean). 
By (1.7) it follows from the linear independence of (a, 2wi) that 

a, 27ri, ea, 1 

has transcendence degree ^ « + 1 , whence w is transcendental over 
the field F\ obtained by adjoining all values ea to Q. Now take n 
large, let u = («i, • • • , un) be algebraic over F\ and linearly indepen­
dent over F\. Consider 

a, ea, u, 2iri'y ea, ee°, eu, 1. 

Selecting u to have sufficiently many elements, one sees again from 
(1.7) that 2ici is transcendental over Qie", u). One then proceeds by 
induction. 

Schanuel also formulated his conjecture for formal power series in 
lieu of complex numbers. In this context the conclusion amounts to 
the algebraic independence of formal power series. This was proved 
by Ax [10]. 

The theory of transcendental numbers can also be developed p-
adically. Let Cp be the completion of the algebraic closure of the p-
adic numbers Qp. Then Cp plays for the £-adic absolute value the 
same role as C for the ordinary absolute value. Mahler first extended 
the transcendence proof of ea and a& to the £-adic case [57]. For fur­
ther results, see also Adams [7]. Brumer [23] proved the £-adic ana­
logue of Baker's theorem, and thereby showed that Leopoldt's £-adic 
regulator does not vanish [54], for abelian extensions of the rationals. 
The £-adic analogue of (1.6) given in [49] has been used by Serre in 
his theory of £-adic representations [82]. The methods of complex 
variables in the standard case can be replaced by the p-adic Schnirel-
man integral and Cauchy formula. For a convenient exposition, see 
Adams [7]. 

2. Sketch of proofs. Gelfond was the first to realize explicitly the 
connection between transcendence problems and algebraic values of 
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entire, or meromorphic functions. Many years before he proved the ofi 
theorem, investigating special cases in 1929 (cf. [43]), he saw that 
such a problem was related with a question (I believe raised by Polya) 
concerning the possibility of an entire function taking integral values 
at integers, and the interpolation problem arising from it. If ƒ, g are, 
say, entire functions taking algebraic values in a set S, then one re­
duces the study of S to an analytic problem concerning zeros of an 
auxiliary function, a polynomial i n / , g, namely 

with coefficients in a number field (finite extension of the rationals). 
From the assumption t ha t / , g take on values in the number field in S, 
one can construct such a function F having many zeros by a simple 
lemma of Siegel concerning linear equations with integral coefficients, 
[87] or [49]. For simplicity we state Siegers lemma over the ordi­
nary integers Z. 

(2.1) Let 

UuXi + • • • + UlnXn = 0, 

UnXi + • • • + UmXn = 0, 

be a system of linear equations with integer coefficients Uij. Let 
A be a bound for the absolute values of all u^-, and assume 
n>r. Then this system has a solution in integers x3- not all 0, 
satisfying 

max \xj\ ^ (nA)r^n~r). 
Suppose t h a t / , g take on values in the integers Z, and are algebrai­

cally independent. On the one hand, using the lemma, one can con­
struct a function F having enough zeros in the set S so that at some 
point w of S, the value F(w) is very small. On the other hand, if 5 has 
sufficiently many elements, one can also pick w so that F(w) 7*0, and 
since F(w) is an integer, one gets the contradiction. 

A function like F was used first by Siegel when he proved tran­
scendence results for the Bessel function (stated precisely later). A 
similar function led to other results like the transcendence of aP. As 
an example, we shall now sketch a proof of (1.6), in a special case, with 
the functions 

ƒ(/) = e^ and g(t) = e^*, 

showing that they cannot take on values in Z at three points si, z2, z% 
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linearly independent over 0 . Suppose that they did. We let n be a 
large integer, assumed square free for convenience. Let r=(4w)3 / 2 . 
By Siegel's lemma we can find integers a a not all 0 such that the 
function F— £ X J - I

 aafi^ n a s a z e r o a t every point 

k'Z = klZl + #232 + fe&3, 1 ^ fe^ ». 

This amounts to solving linear equations in r2 unknowns, with 
r2 = (4n)3 and the number of equations is equal to nz. The coefficients 
of these equations are bounded by Cn for some constant C. Hence 
by Siegel's lemma, we can find integers a# not all 0, satisfying a simi­
lar bound. Since/ , g are algebraically independent, it follows that F 
is not identically zero, and takes on values in Z for all arguments k-z. 
On the other hand, F cannot vanish at all such linear combinations, 
with all triples of integers k, because the linear combinations k-z are 
not discrete, or alternatively because F is entire of order 1, and in a 
circle of large radius R, there are more such linear combinations than 
the bound 0(R) for the number of possible zeros of F. Let 5 be the 
largest integer such that F(k-z)=0, for all k with l^kvSs. Then 
s^n. Let 

W = ktfi + ^2^2 + kzZzf 

with some kv = s + li and lSkv^s + l for all z>, and F(w)9£0. Then 

\F(w)\ =gC«"\ 

with a suitable constant C. We now estimate | F(w) | by considering 
the expression 

F(f) „ 
F(w) = ^ ITO - *•*) 

ne-*-*) 1 1 

the products being taken over all kv with l^kv^s. There are sd terms 
in the product. The function on the right of this last equality is an 
entire function, and we apply the maximum modulus principle on a 
circle of radius R = szl\ Note that for 11\ =R, we have \t-k-z\ ^R/2 
(for s large), and also 

| w — k • z | Cis Ci 
| t - k-z\ R s1'2 

for some constant C\ and s large. Hence 

log | F(w) | « log | F \R + 53 - | s 3 log s, 

where the sign <3C means that the left-hand side is smaller or equal to a 
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constant times the right-hand side (Vinogradov's notation), and | F\R 
is the maximum of F on the circle of radius R. A trivial estimate 
shows that 

log| JF |*<K*» , 

whence 

log | F(w) | <3C J3 — s* log s. 

For n (and hence s) large, this contradicts the fact that | F(w)\ ^ 1 , 
and completes the proof. 

The extension to number fields and algebraic values involves only 
minor technique in algebraic numbers. If K is a number field (finite 
extension of @), let {a) range over the embeddings of K in C. For 
any element a in K, we call {aa} the conjugates of a. A positive inte­
ger d such that da is an algebraic integer is called a denominator for 
a. We let 

size(a) = max(log d, log | era | ), 

where d is the smallest denominator for a, and aa range over the con­
jugates of a. Taking the norm of da, which is an ordinary integer 5^0 
if a 7*0, one gets the fundamental inequality 

(2.2) -2[K: Q] size(a) ^ log | <ra | , 

for any a. This inequality then can be used to replace the last part 
of the argument in the preceding proof. Generally speaking, working 
with algebraic numbers in this context is no harder than working with 
ordinary integers. 

As an example, we shall give one of Baker's theorems [ l l ] , con­
cerning an effective lower bound for linear combinations of logarithms 
of algebraic numbers, with algebraic coefficients. Baker's proof used 
previous ideas of Gelfond [44] and Feldman (cf. his list of papers). 
Although Gelfond's method was effective, it applied only to the case 
of two logarithms, and Baker saw how to extend it to linear combina­
tions of n logarithms. The importance of doing this had already been 
observed by Gelfond, who remarked that such an extension would 
lead to an effective improvement of Liouville's inequality (see below). 
Baker's theorem is as follows. 

(2.3) Let ait • • - , cew+i be algebraic numbers, whose logarithms are 
linearly independent over the rational numbers. Let r>n+2. 
Then there exists an effectively computable constant c(a)=c 
such that for any algebraic numbers /?i, • • - , fin of size ^ h we 
have 



i97i] TRANSCENDENTAL NUMBERS, DIOPHANTINE APPROXIMATIONS 643 

log | 0i log «i + • • • + ft, log an — log an+i \ > — chT. 

We now sketch Bakers proof, and assume that ft, • • • , ft» are 
such that 

log | ft log a! + • • • + ft» log <Xn ~ log OLn+1 | « — hT, 

with h^c(a) size ft We construct the auxiliary function 

r{Zi, • • • , 2w+i) = 2-^ aU)<*i * • ' a» (« i • • • a» ; 

to have zeros of high order a t certain points. We shall use vector nota­
tion, so that we write 

F(z) = ]T) aU)a
J'z(afi)^+izn+i, 

The sum is taken for 0 ^ j „ < / , with a suitable integer / . Using vector 
notation, we abbreviate this in the fo rmj rg / . Let X = (Xi, • • • , X»). 
Let 

be the standard differential operator, and for an integer k ^ 0 consider 

D*F(k, • • • , * ) = S oU)a*ofi***U +jn+il3)\ 

We shall want to make this derivative essentially equal to 0 for cer­
tain values of k and X. This amounts to solving linear equations. In­
deed, an+i is very close to a?1 • • • a£n, and one solves the correspond­
ing linear equations with a? replaced by an+i. Let 

Select 5 such that 1 < 5 < T / ( W + 2 ) . Let 

ƒ = A* and L i J H ^ ' » . 

(Since for instance A is not necessarily an integer, by these equalities 
= we mean that J or L are equal to the largest integers less than or 
equal to the right-hand sides.) Solve the linear equations 

Gx(k) = 0 

for X SL and l^k^h. Then the number of variables is approximately 
equal to Jn+1, the number of equations is approximately equal to Lnht 

and the size of the coefficients is <3CLA. Note that the number of var­
iables is approximately equal to the number of equations. By using 
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the existence of zeros of high order, and the usual estimate with the 
maximum modulus principle, one then finds that 

(*) log|ZW?(*,- • • , * ) | « - * • " 

for 1 Sk^h. Proceeding inductively, we wish to achieve the inequal­
ity (*) for 

kSK = *i+» <*-DM and X £ L/2% 

with v ranging from 1 to approximately nz. The inductive step is done 
by taking l^hp+1 and X ^ L/29+1. Let 

f(t) = D*F(t,. . . , 0. 

Then 

We use the maximum modulus principle with a circle of radius 

R = h " " 

and estimate log [ ƒ(/) | . From the fundamental inequality (2.2) we 
conclude that G\(l)=0 by induction. (It is this inductive step 
which represents the improvement by Baker over the earlier Gelfond 
method.) 

Thus our inductive procedure ultimately gets us to 

Go(k) = 22 aU)a an+i = 0 

for k^hd(>n+l). This is a system of linear equations, whose matrix of 
coefficients has a Vandermonde determinant, whence the contradic­
tion which proves Baker's theorem. 

Baker's theorem has gone through successive improvements, lower­
ing the exponent r, and recent papers of his adjust the arguments to 
avoid the Vandermonde determinant at the end. This is advantageous 
because in more complicated situations requiring an extension of the 
proof, it is not obvious to show that the corresponding determinant 
does not vanish. One of these deals with elliptic functions. Cf. the 
papers of Baker and Coates on this subject. 

3. Algebraic values of meromorphic functions. The importance of 
solutions to differential equations in connection with transcendence 
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results first appeared in Siegel's results on the Bessel function [86], 
We state these in §5. Schneider [79] gave a general criterion under 
which an entire, or meromorphic function satisfying a certain type of 
algebraic differential equation with algebraic coefficients can take on 
values in a number field at only a finite number of points. His type of 
differential equation was sufficiently general to include the ordinary 
exponential function, the Weierstrass elliptic function, and the elliptic 
modular function. Using Schneider's ideas properly, and proving the 
right estimates, I then extended the result to the most general alge­
braic differential equation (needed for other applications e.g. abelian 
functions). We recall that an entire function ƒ on C is said to be of 
strict order ^ p if 

log | / | * « t f > . 

A meromorphic function is said to be of strict order ^ p if it can be 
expressed as a quotient of entire functions of order ^ p . We then have 
[49]: 

(3.1) Let K be a number field. Letfi, • • -, ƒ# be meromorphic func­
tions of strict order ^ p . Assume that the field K(fi, • • • , ƒ#) 
has transcendence degree ^ 2 over K, and that the derivative 
D—d/dt maps the ring K[fi, • • • , fN] into itself. Let Wi, 

• • • , wm be distinct complex numbers not lying among the 
poles of the fi such that 

fi(wv) E K 

for alli = l, • • • , N andv = l, • • • , m. Then m ^20p[K : Q], 

The transcendence of ea then follows by considering the ring K [t, e*]. 
Assuming that ea is algebraic, one takes K to contain both a and ea. 
Then the infinite number of points a, 2a, 3a, • • • provides the con­
tradiction. Similarly, for a? one considers K\e\ e^']. Still following 
Schneider, one gets the transcendence of $(a) for a Weierstrass #>-
function, with algebraic a, and algebraic g2, & by considering the ring 

KW, VI 
Schneider had proved the transcendence of the periods of abelian 

functions by dealing with several complex variables [78 ]. I formu­
lated a theorem analogous to (3.1) in several variables [49]. To get a 
similar bound on the set of points where the functions take on values 
in K, I had to assume that the set S of such points was a product of 
sets on the coordinate axes, to be able to use Cauchy's formula in 
several variables as an iteration of the formula in one variable (as 
Schneider had done). The product condition was unnatural, as one 
sees from the example of functions 
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where P is a polynomial with integer coefficients. These functions are 
algebraically independent and take on algebraic values at the alge­
braic zeros of P . By using deep techniques from the theory of several 
complex variables (potential theory and Hörmander L2-estimates) 
Bombieri was able to remove the product condition, and proved the 
following theorem [21 ]. 

(3.2) Let K be a number field and let f=(fi, • • • , JN) be mero-
morphic functions in Cd of strict order S p. Assume that the 
transcendence degree of K(f) is ^ d + 1 , and that the partial 
derivatives Di — d/dzi map the ring K[f] into itself. Then the 
set of points wÇzCd where f (w) is defined andf(w) Ç:KN is con­
tained in an algebraic hyper surf ace of degree 

^ d(d+l)p[K:Q]+2d. 

In the simple case when the above set of points S is of type 

S = Si X • • • X Sd, 

where SyCC, then Bombieri's theorem implies the bound which I had 
obtained for the cardinality of 5, of the form bp[K:Q], for some easily 
computable constant b depending on d. This special case is actually 
sufficient for a number of applications (see below, and [49]). 

When no differential equation is available, then one has to rely on 
other properties of the set of points where the functions take on values 
in K. Usually such a set S is expressed as a union of subsets {Sn}, 
where each Sn is contained in a ball of radius <3Cw, and where the func­
tions have a specified arithmetic order of growth, e.g. there exists a 
constant C such that for all n and all zÇzSn we have 

size/(z) £g Cnp. 

Schneider first formulated such a theorem [79] in one variable. For 
useful variants and applications, see [49]. We shall state the applica­
tions on group varieties in §4, including the several variables version. 

We note that instead of taking values in a number field, one may 
take values in a finitely generated extension, provided that one as­
sumes a condition to replace (2.2). See [49] for the appropriate state­
ments, raising possibilities for an inductive argument. In dimension 
1, Waldschmidt [92] eliminated the extra condition. We discuss this 
again in connection with diophantine approximations. 

4. General exponential functions. A group variety is a group in 
affine or projective space, which is also an algebraic variety (con-
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nected), i.e. its points are the set of solutions of algebraic equations, 
and such that the law of composition and inverse have graphs which 
are also algebraic varieties. An important example is the linear group 
GL(m) of invertible mXm matrices. If K is a subfield of the complex 
numbers, we say that the group variety is defined over K if all the 
above mentioned algebraic equations can be chosen to have coeffi­
cients in K. If that is the case, then we denote by GK the set of points 
of G having coordinates in K, and it follows that GK is a group. When 
K is a number field, we view GK as a discrete group. When K = C, 
we view Gc as a complex analytic manifold, i.e. a complex analytic 
group. 

Let G be a group variety. By a 1-parameter subgroup of G we mean 
a complex analytic homomorphism </> : C-*Gc of the complex line into 
Gc whose derivative at the origin is injective. Thus <t> is an analytic 
curve in Gc» We define a d-parameter subgroup <j> : Cd-+Gc in a similar 
way. For instance, when G is the linear group, a 1-parameter sub­
group is given by the exponential series 

where M is a matrix. We are interested both in conditions under 
which a point 4>{z) is algebraic, and also under which the image of <t> 
is an algebraic subgroup (i.e. is closed). Most of the time, of course, 
the image just winds around (in the compact case). Indeed, the com­
pact case is obtained as follows. We take a lattice L of real dimension 
2n in complex w-space. Let us assume that the factor group Cn/L can 
be embedded complex analytically in projective space Pc, so that 
its image in projective space is necessarily an algebraic group (Chow's 
Theorem, for instance). Let us also assume that this group is defined 
over a number field. A 1-parameter subgroup may be viewed as 
winding around the torus C n / A which is called an abelian manifold. 
The algebraic group corresponding to it in projective space is called 
an abelian variety. In dimension » = 1, the parametrization of the 
abelian variety is done by means of the Weierstrass elliptic function, 

the coordinates on the right being projective coordinates, on the ellip­
tic curve 

y2 = 4#3 - g2x - gz. 

An analytic subgroup of an abelian variety is closed if and only if it 
is an abelian subvariety (i.e. an algebraic subgroup). If this analytic 
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subgroup is algebraic and has dimension 1, it is an elliptic curve. 
For 1-parameter subgroups, we have the following theorem [49]. 

(4.1) Let G be a linear group variety or an abelian variety, defined 
over the field of algebraic numbers. Let <j> : C—>Gc be a 1-param­
eter subgroup. Let Y be a subgroup of C having at least three 
linearly independent elements over Z in the linear case, and 
seven in the abelian case. If <j>(Y) is contained in the group of 
algebraic points of G, then the image of <t> is closed, i.e. it is an 
algebraic subgroup of Gc-

(In the mixed case of a product, say, one has to take the maximum 
of three and seven to get the same conclusion.) 

The proof follows the same lines as the proof given in §2, but to 
make the required estimates in the abelian case, one must use the 
quadratic form of Néron-Tate [64]. Conjecturally, the numbers 3 
and 7 can be shrunk to 2, as for (1.6). 

The extension of (4.1) presented difficulties of two types. The first 
concerns pure analysis, namely the need for a Schwarz lemma in 
several variables. I t was surmounted by Bombieri-Lang [22], who 
prove the following result. Let X be a positive number. Let {Sn} be 
a sequence of subsets of Cd. Let Br be the ball of radius r > 0, centered 
at the origin in Cd. We say that the family {Sn} is X-distributed in Br 

if the following condition is satisfied. There exists No such that given 
w(E;Br and N^N0 there exists a point w £ 5 v such that 

| u - w | S 1/2NK 

If T is a finitely generated subgroup of Cd, with generators 
{uu - • • , um) then we let Sn be the set of all linear combinations 

kiui + • • • + kmum, | kj | ^ n. 

We have: 

(4.2) Let G be a linear or abelian group variety. Let <f>\ Cd—*Gc be a 
d-parameter subgroup, and let Y be a finitely generated sub­
group of Cd, which is \-distributed in a ball Br. Assume that 
\>(d + l)/2 in the linear case, and >d + lin the abelian case. 
JjT0(r) is contained in the group of algebraic points of G, then 
<l>(Cd) is an algebraic subgroup of Gc, i.e- it is closed. 

The condition of X-distribution is a condition of diophantine ap­
proximation. For further comments on it, cf. [22]. The £-adic ana­
logue of (4.2) was done by Serre [83]. I t is a deep problem to reduce 

file:///-distributed
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the value of X, and to prove that it has the "expected" value arising 
from the theory of diophantine approximations. 

If F i s a variety (algebraic, irreducible) defined over a number field 
K, and (xu • • • , xn) are affine coordinates for a point on V, then we 
say that this point is rational over K if K(x) = K, algebraic over K if 
K(x) is algebraic over K, and transcendental over K if K(x) is not 
algebraic over K, i.e. if at least one coordinate is transcendental over 
K. The other type of theorem which one has on group varieties can 
then be stated as follows [49]. 

(4.3) Let G be a group variety defined over the field of algebraic num­
bers. Let <j>: C-^Gc be a 1-parameter subgroup, whose differen­
tial at the origin is algebraic. If aÇ^C, a7e0 is algebraic and 
<j>(t) is not an algebraic f unction of t, then cj>(a) is a transcen­
dental point on Gc- On the other hand, if there exists a point 
u 7*0 in C such that <f>(u) is algebraic, then 0(C) is an algebraic 
subgroup of Gc. 

The first assertion of (4.3) had been conjectured by Cartier. The 
two formulations generalize the Lindemann theorem (1.2) and the 
Gelfond-Schneider theorem (1.4). In the first case, the 1-parameter 
group is 

t*->el, 

and in the second case, it is 

The only case when <£(/) is an algebraic function of t occurs in the 
linear case, and when </> is formed with the exponential series of a 
nilpotent matrix, in which case </> is even a rational function of L 

Theorem (4.3) applied to abelian varieties yields the transcendence 
of the period vectors, originally proved by Schneider [78]. I t also 
shows that in the representation 

of an abelian variety as a quotient of O , normalized to have algebraic 
derivative at the origin, the image of an algebraic point in Cw is a 
transcendental point on Ac, by considering the line passing through 
the point in Cn, and its image under ©. 

Under the normalization at the origin by means of the differential 
equation (algebraic derivative), Theorem (4.3) extends to the higher 
dimensional case of a d-parameter subgroup 

4>:C*->Gc. 
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Instead of one point u, one must then assume the existence of d points 
linearly independent over C, whose values under <j> are algebraic [49]. 
Note the similarity with (4.2), where we do not normalize the map, 
but then assume the existence of more points linearly independent 
over Z (not C). 

In the 1-dimensional case, Schneider had proved: 

(4.4) Let j be the elliptic modular function. If r is algebraic and not 
imaginary quadratic, then j(r) is transcendental. 

By means of the higher dimensional results, one then gets a higher 
dimensional analogue as follows [49]. 

(4.5) Let A be an abelian variety parametrized as above, © : Cn—^Ac, 
normalized to have algebraic derivative at the origin. Assume 
that the period matrix is normalized so that the principal matrix 
has the usual canonical form, and let the period matrix be 
Û = (Wi, W%). Let T= W2WÏ1. If Tis algebraic, then T (viewed 
as a linear transformation) maps the period lattice tensored 
with Q into itself. 

When » = 1, then T = r , PFi=coi and W2=w2. Note that W{1W2 is 
the moduli point associated with the abelian variety in the Siegel 
upper half space Hn. The theorem concerns W2WÏ1, and the relation 
between these points is not clear. 

One may at tempt to formulate the Schanuel conjecture in the 
present context. One then has to consider a point in the product space 

(a, 0(a)) E &X Ac. 

The general expectation is that the transcendence degree is ^ n under 
obvious conditions on the curve passing through a. The Riemann 
relations provide a counterexample to the analogue of Schanuel's 
conjecture in this context, but hopefully, if one stays away from the 
period relations, i.e. if a is not a period point, then the expected lower 
bound for the transcendence degree will hold up. For a general dis­
cussion, cf. [49]. Grothendieck has also formulated a conjecture 
concerning the possible polynomial relations for the elements of the 
period matrix, to the effect that they should all be due to algebraic 
cycles on the product of the variety with itself. The situation is as 
follows. Let W be a variety defined, say, over the rational numbers. 
Let {7»} be a basis for its homology H*(W, Q), and let {OJJ} be a 
basis for H*(Wt Q), where H* is the cohomology defined by the alge­
braic complex of differential forms of De Rham. We assume that the 
basis {coy} is obtained by taking together bases for the Hodge spaces 
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Hp>q. Let Z be a subvariety of W, of dimension k. Then Z~^i w<7»-
If co is a differential form not of type (k, k), then 

X) ni I cu = I zo) = 0. 

In this way we obtain a linear relation among the periods, with ra­
tional coefficients. Consider this when W=Vr is the product of a 
variety V with itself taken r times. Then H*(W, Q) is the tensor prod­
uct of H*(V, Q) with itself r times, and applying the above shows 
that an algebraic cycle on Vr gives rise to a polynomial relation of 
degree k among the periods. 

The graph of a nontrivial endomorphism of an elliptic curve (com­
plex multiplication) gives an example, which would explain the alge­
braic (linear) dependence between two fundamental periods over the 
algebraic numbers. 

The simplest "Riemann" relation is the Legendre relation (it in­
volves the multiplicative group), arising from the parametrization of 
the group variety associated with integrals of the second kind by the 
map 

given by 

CXC->Gc 

(t, u) ~ (i, »(t), r(o, u - e(0), 
where f is the Weierstrass zeta function. This map has periods 
(coi, 771) and (o>2, V2) (classical notation), and the Legendre relation 

771W2 — rj2Ui = 2wi 

is nothing but the Riemann relation for this case. I t is of degree 2. 
On the other hand : 

(4.6) Any nonvanishing linear combination of rji, ?/2, coi, C02, 2wi 
with algebraic coefficients is transcendental. 

Without the 2wi, this was proved by Baker [13], and the more gen­
eral statement is due to Coates [28]. The technique of proof extends 
Baker's technique. 

If G is a commutative group variety, defined over a number field 
K, then its tangent space at the origin can be identified with Cn 

(n — dim G). Then the general exponential map 

4>:Cn « Tc-^Gc 
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provides a geometric setting generalizing the ordinary function e*. 
Its inverse mapping is a generalized log, and the points in Cn which 
map on 0 are the (vector) periods. 

One can also look at the parametrization of curves and varieties of 
higher genus. Thus already in [48], I conjectured that if 

is the uniformizing map of a curve V of genus ^ 2 , from the disc D 
centered at the origin, normalized so as to have algebraic derivative 
at the origin, and if a is an algebraic point of the disc 7̂  0, then <t>(a) 
is transcendental on V. (We assume that the curve is defined over a 
number field.) One can take the upper half plane instead of the disc. 
Curves can also be parametrized by the "noncompact" case of modu­
lar functions, so that I was thus led to the conjecture that if r is a 
point of the upper half plane, not equivalent to i or p = e2vilz under 
the modular group (i.e. such that ƒ (r) 5^0) and such t h a t j ^ ) *s alge­
braic, then i ' ( r ) is transcendental. Siegel [88] also makes remarks 
concerning the possible transcendence of ƒ (r) at quadratic imaginary 
irrationalities other than i or p. If one normalizes g2, gz to be algebraic, 
and if one takes into account the formula relating the derivative ƒ 
with j (cf. Siegel [88] or the seminar on complex multiplication [84]), 
then one sees that the conjecture concerning the transcendence of 
ƒ (T) is equivalent to the following concrete statement: Let g2t gz be 
algebraic j and let co be a nonzero period of the corresponding $-func­
tion. Then co2/V is transcendental. Indeed, one has the relation 

9co2g3 
ƒ (*) = —.—j(z;. 

mg2 

(The formula in Siegel [88] is not yet properly normalized so that 
the co2 does not appear in it. The point is that g2, gz can be viewed as 
functions of lattices, and one has to take a lattice in the given class 
which makes g2, gz algebraic. Then co2 appears as the quotient of co6 

by co4.) The problem is analogous here to determining the transcen­
dence of (log 2)2/log 3, say. 

Observe that the parametrizations of the curves by j (or the pa­
rametrization of curves of higher genus corresponding to modular func­
tions of level N), and the parametrizations of the curves by the uni­
versal covering map normalized to send the origin of the disc to an 
algebraic point, and to have algebraic derivative at the origin, cor­
respond to two different normalizations of the uniformizing map. 
(The fact that the fundamental domain of j is not compact is not es-
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sential here, the same phenomenon occurs in the compact case, as in 
the work of Shimura.) 

As an incidental question for the parametrization of Vc as above, 
one can ask if the radius of the disc D is transcendental when 0 is 
normalized as stated in [48]. 

For some results concerning the field generated by values of the j -
function and its derivatives over the algebraic numbers, cf. Rama-
chandra [70], who makes use directly of the differential equation 
satisfied by the j-function. For instance, he proves: 

(4.7) Let f be a modular form having algebraic q-expansion coeffi­
cients (classical terminology). Then the singular values j"(r), 
f'(T)ff"(T)> ' * ' for r taking values in an imaginary quadratic 
field of discriminant d lie in the field 

9(TT, A^(Vd)) 

for a suitable positive integer m. 

(The integer m is made explicit, but this gets too technical here.) 
As usual, A is the modular discriminant. 

One can extend the above discussion to bounded symmetric do­
mains with compact quotients which are algebraic varieties defined 
over number fields. These form one possible generalization of curves 
of higher genus, and one may even wonder if these varieties do not 
satisfy the Mordell property (of having only a finite number of ra­
tional points, or points rational over a given number field). Whenever 
one wants to conjecture such a statement about a variety, one must 
be sure that there is no obvious geometric reason why the variety 
could have many rational points. I know of three such reasons: An 
infinite group of automorphisms, the function field contained in a 
purely transcendental extension of the constants, and the variety 
containing "blown up" points, or straight lines. I am told by experts 
that the first two conditions are known not to prevail, and that the 
third is probably not known in general, but probably does not prevail 
either, for the varieties mentioned above. 

Although I have omitted a discussion of values of zeta functions 
(principally for lack of competence) I would like to refer the reader to 
a t least one paper which makes a connection between such values and 
values of functions of exponential and automorphic type, namely that 
of Damerell [30 ], who studies values of Hecke L-series at, say, 1/2, 
in connection with the Birch-Swinnerton Dyer conjecture concerning 
the rank of the Mordell-Weil group of an elliptic curve. 

In looking at 1-parameter subgroups of abelian varieties, and to 
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prove certain estimates, especially from below for theta functions, I 
was led to conjecture [49]: 

(4.8) Let B be a 1-parameter subgroup of an abelian variety, em­
bedded in projective space, and let H be a hyperplane section. 
Assume that B is Zariski dense in A. Then the intersection of 
B with H is infinite, unless B is algebraic {in which case 
Bezout's theorem applies). 

This was proved by Ax [10], who also discovered a general phe­
nomenon concerning the intersection of analytic subgroups and alge­
braic subsets of a group variety, as follows : 

(4.9) Let A be an algebraic group and B an analytic subgroup. Let 
V be an algebraic subvariety of A. Assume that V, B pass 
through the origin. If locally at the origin the intersection of V 
and B has an analytic component W of excessive dimension, 
and if V is the Zariski closure of Win A, then there exists an 
analytic subgroup A' at the origin containing both V and B 
such that the intersection of V and B with respect to A' is not 
excessive. 

Of course, by excessive, we mean that if W is an analytic compo­
nent of the intersection of V and B on A, then 

dim W > dim V + dim B — dim A. 

Ax relates this with the function theoretic formulation of Schanuel's 
conjecture. Thus we see throughout this section that the theory of 
transcendental numbers intermingles very closely with the theory of 
functions of several complex variables. 

S. E-îunctions. Siegel [86], [87] defined an E4unction to be a 
function which admits a power series expansion 

ƒ(*) = Jl<XnZn/n\ 

with complex coefficients an belonging to a number field K, satisfying 
the following conditions: 

E l . There is some constant c such that all conjugates of an are 
bounded in absolute value by cn. 

E2. There exists a sequence of integers dn > 0 such that dn is a 
denominator for a* (k = 0, • • • , n) and dn ^ cn. 

The ordinary exponential function ez is an ^-function, and so is the 
Bessel function 

/<>(*) = E * * v W . 
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Siegel [87] gives other examples similar to these. The product and 
sum of E-functions are E-functions. 

(5.1) Let Q=(Qij) (i, j=l, • • ' , s) be a matrix of rational func­
tions in K(z) over a number field K. Let F be the column vector 
formed by E-functions fi, • • • , ƒ « , and assume that it satisfies 
the linear differential equation F' — QF. Assume that the func­
tions j i , • • • , ƒ , are algebraically independent over K(z). Let 
otÇiKbe distinct from 0 and from the poles of the rational func­
tions Qij. Then the values j\(a), • • - , fs(a) are algebraically 
independent. 

Siegel [86] originally proved this theorem for the Bessel function 
and its derivative, and extended it to the more general case under an 
extra condition. Shidlovsky showed how to eliminate this condition 
by formulating and proving the appropriate lemma [85]. An exposi­
tion is also given in [49]. 

Extensions have been given by Sprindzuk [89]. I t is a problem 
both to weaken the conditions on the coefficients of the power series, 
and to prove that certain functions are ^-functions (e.g. Bessel func­
tions J\ with algebraic X). 

In the applications, it is also necessary to prove that certain func­
tions are algebraically independent. We refer to Siegel for this [87]. 

The main part of Siegel's arguments is linear. I t remains an open 
problem to see to what extent one can replace "algebraic indepen­
dence" by "linear independence" throughout the statement of the 
Siegel-Shidlovsky theorem. 

Also, the p-adic analogue of the transcendence theorem for El-
functions is not known. Siegel's arguments depend on an essential 
way on the factorials in the denominators, and no substitutes are 
known at present. 

DIOPHANTINE APPROXIMATIONS 

6. Metrical results. Let a be a real number, and assume that a is 
not rational. We denote by ||a|| the distance of a to the closest integer. 
If this distance is less than 1/2, then there is a unique integer p such 
that ||a|| = \a — p\. Thus the norm which we have defined is essen­
tially the distance on the circle. More generally, one can consider 
vectors X in Rn, and define their norm \\x\\ on the torus Rn/L, where 
L is a lattice. We concentrate mostly on single numbers. 

We are interested in the distribution of the numbers qa on the 
circle, i.e. on R/Z, when q ranges over the positive integers, and we 
want to give quantitative results concerning this distribution. We 
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look mainly at the homogeneous case, i.e. how close \\qoi\\ can come 
to the origin. The first observation is due to Dirichlet: 

(6.1) Let Nbe a positive integer. There exists an integer q, 0<q^N, 
such that \\qa\\< 1/N. 

The proof is easy, so we give it. Cut up the interval [0, 1 ] into N 
equal parts of length 1/N, and consider the N+l numbers Oa, la , 
2a, • • • , Na modulo Z. Two of them must lie in the same segment 
(mod Z), say ra and sa with r<s. We let q = 5 — r, and obtain 

Ml < 1/N g l/q, 
as desired. 

Note that \\qa\\ = \qa—p\ for ||ga|| sufficiently small. The in­
equality ||ga|| <l/q can also be written in the form 

\qa-p\ < l/q or \ a - p/q\ < l/q2. 

Thus depending on how we write these inequalities, we get an ex­
ponent of 1 or 2 on the q of the right-hand side. The last inequality 
shows that we are dealing with the approximation of a by rational 
numbers. 

In higher dimensional space, we take vectors A\f • • • , Ar in n-
space. Then the same type of argument shows that there exist inte­
gers qi such that 

I M i + • • • + qrAr\\ < 1/N and | qi\ S Nn". 

Davenport and Schmidt [32] prove that such inequalities cannot be 
improved for almost all numbers. More generally, one considers 
linear forms Li, • • • , Lm in n variables. We let 

Ô(m, n) = (n — m)/m 

be the "Dirichlet exponent," and we consider the simultaneous in­
equalities 

I Li(Q) I « i/a»<-.»> 

where Q=(qu • • • , ffn) is a vector of integers, and # = max | gt-|. 
We recall tha t a set of numbers is said to have measure 0 if given 

€>0 the set can be covered by a countable number of intervals such 
that the sum of the lengths of these intervals is <€. Khintchine 
proved : 

(6.2) Let \f/ be a positive function such that ]Ca°°=i^(#) converges. 
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Then for almost all numbers a (i.e. outside a set of measure 0), 
there is only a finite number of solutions to the inequality 

\\qa\\ < *(q). 

If \p is decreasing, and the above sum diverges, then for almost 
all numbers a, there exist infinitely many solutions to the in­
equality ||ga|| < yp(q). 

The proof of the second assertion is harder and we refer to 
Khintchine [46] for it. The proof of the first assertion is easy and we 
give it. We may restrict our attention to those numbers a lying in 
the interval [0, l ] . Consider those for which the inequality has 
infinitely many solutions. Given e select go such that 

i : Hq) < «. 
Ga«0 

For each q è g 0 consider the intervals of radius \fs(q)/q surrounding 
the rational numbers 

0/<7, 1/q, • • ' , (q - l)/q. 

Every one of our a will lie in one of these intervals because for such 
a we have 

\a-p/q\ <*(q)/q. 

The measure of the union of these intervals is bounded by the sum 

2-, Q < 2e, 

as was to be shown. 
For example we can take \j/(q) = l/(log q)1+e for any e>0 . 
Let \p be a decreasing function with divergent sum. For each (real) 

number a, let \(N) (X depends on a and \p) be the number of solutions 
in integers p, q of the inequalities 

0 < qa - p < yl/(q) and 1 g q < N. 

(6.3) For almost all numbers a, we have the asymptotic relation 

\(N) — f }(%) dx. 

A special case of (6.3) was first stated by LeVeque [55]. The 
general theorem was proved by Erdös [33] and Schmidt [73]. We 
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note especially that Schmidt obtains important generalizations to the 
higher dimensional case, with certain error terms. 

7. The type of a number. Results as in §6 which hold almost 
everywhere are said to be metrical results. They suggest a first order 
of magnitude for the typical behavior of numbers given as values of 
classical functions, suitably normalized. For instance, as expressed in 
[48], I would expect all such numbers to satisfy the property that 

M l > v?1+€ 

for all but a finite number of q. However, let us call a number a of 
bounded type if there exists a constant c> 0 such that 

M l > c/q 
for all integers q>0. I t can be shown that a number is of bounded 
type if and only if its continued fraction has bounded entries, and 
that the set of numbers of bounded type has measure 0. More 
importantly from our point of view, we have: 

(7.1) A number a is of bounded type if and only if f or any positive 
function xf/ with convergent sum ]F) Â(<z)> the inequality 

IMI < *(«> 
has only a finite number of solutions. 

(For the proof, see [50 ]. Schanuel showed me how to prove one of 
the implications, namely that the convergent sum condition implies 
bounded type.) Consequently the metrical theorems cannot be held 
as models beyond this first sort of approximation, and one must look 
for a more subtle invariant, which will be associated with any par­
ticular number, or class of numbers, under considerations. 

With this point of view, I defined the type of a number [50 ]. There 
are alternative definitions. Let ƒ be a positive increasing function (not 
necessarily strictly). We say that a has type ^ ƒ if 

IMII £ W(s) 
for all sufficiently large q. This condition implies that for all suffi­
ciently large integers N, there exists a solution in relatively prime 
integers p, q>0 of the inequalities 

| qa - p | <l/q and N/f(N) û q < N, 

and the converse is almost true, when ƒ does not grow too fast. See 
[50] for details. (The proofs use continued fractions.) One can then 
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formulate a basic problem in diophantine approximations: Deter­
mine a type for the classical numbers. 

To say that for all sufficiently large q we have 

\\q*\\ ̂  W + < 

amounts to saying that a has type ^ qe. (Here, as always, we sup­
pose that this holds for each €>0.) However, it is more fruitful to 
work with the function ƒ so that f(q) appears as a factor of g, rather 
than with the e in the exponent, because as shown in [50 ], the func­
tion ƒ appears in an essential way in other estimates associated with 
the number. We recall two of these here. 

If x is a real number, let R(x) be the remainder of x modulo Z, i.e. 
the unique number such that 0 ^ x < l and such that x—R(x) is an 
integer. Let us form the sum 

N 

One expects the values of R(na) to be somewhat evenly distributed 
around 1/2. Using the type, one then finds the following estimate: 

(7.2) Let a be of type S ƒ and assume that the function f(t)/t is 
decreasing. Then 

SN(a) =iN + o(f —d!\. 

Relations between rational approximations to a and the sum SN 
had been noted by Behnke [19] and Ostrowski [65], but the above 
statement (which has a very simple proof) was first given in [50 ]. 
The essential thing here is the appearance of a canonical error term 
as an integral involving the type. A similar integral error term 
appears for the function X discussed in (6.3). If a has type ^ ƒ, let 
us write \(/(t) =œ(t)/t. Under simple conditions on the type in relation 
to o, but especially that œ tends to infinity faster than the type, one 
finds that 

rN ( rN o>(t)l,2f(t)112 \ 
(7.3Ï \(N) = I iKO dt + 0lj dtV 

Thus if o) grows much faster than ƒ, then the first integral dominates 
the second integral. In particular, if œ(t) —at with 0 < a ^ l , then this 
amounts to the usual "equidistribution" function, and we have 

a N /(01 / 2 \ 
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If ƒ(/)/ / tends to 0 as / becomes large, then the error term is o(N). 
This gives a quantitative description of the equidistribution of the 
numbers qa on the circle, in terms of the type for a. For the proofs, 
see [50]. 

Because of Khintchine's convergence theorem (6.2) one sees that 
almost all numbers have type (log / ) 1 + e (for instance) so that the 
above asymptotic results apply for almost all numbers. But their 
formulation in terms of the type makes them applicable to specific 
numbers, and thus reduces the study of such asymptotic estimates to 
a determination of the type. However it is clear from the form of the 
error terms above that they are significant only for "good" types 
(e.g. satisfying the condition ƒ(/)//—»0). Only for algebraic numbers 
or a few isolated transcendental ones is such a type known at present. 

Adams [5] extended these theorems to the higher dimensional case, 
when the type is defined by an inequality 

| | g i« i+ • ' • +qnan\\ > l/qnf(q) 

and g = max \qi\. According to Schmidt [74], the measure theoretic 
expectancy is that \{N) is asymptotic to 

and Adams proves this with an integral error term generalizing (7.3). 
Schmidt [75] did it for the basis of a real algebraic number field. 

When the function co does not grow faster than the type / , then the 
above error terms break down and each number will be expected to 
exhibit its own peculiarities. We discuss some special types in the 
next two sections. Here we still mention the connection with the 
asymptotic function X in the few known cases. 

The Liouville inequality (see below) shows that quadratic numbers 
are of bounded type. In that case, I proved [50 ] : 

(7.4) Let a be a real quadratic number. Let c be a number such that 
the inequalities 

0 < qa — p < 1/q and 1 ^ q ^ N 

have infinitely many solutions. Let \{N) be the number of 
solutions. Then \(N)~ci log Nfor some constant c\. 

This was extended to a basis of a real algebraic number field by 
Adams [6]. 

Adams [2] also gives the value of X for e and numbers having the 
same kind of continued fraction, namely Hurwitz numbers (cf. Perron 
[66]). His result for e is typical: 
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(7.5) Let g(x) be the inverse function of the f unction 4aT(:x;+3/2), 
so that g(x) is asymptotic to log x/log log x. Let \(N) be the 
number of solutions of the inequalities 

0 < qe - p < 1/q and 1 ^ q S N. 
T/hen 

UN) = i(2g(N))z'2 + 0(g(N))-

Using the same technique as Adams, looking at the continued frac­
tion, I determined the type of e as being ^ 2 g + 0 ( l ) . This is best 
possible in the sense that subtracting a sufficiently large constant is 
not a type. Cf. [50]. In this case, the type is such that the function 

Hq) = l/qf(q) 

has a divergent sum. The number e is behaving better than almost 
all numbers from the point of view of being badly approximable by 
rationals. 

No other sharp statements like these are known at present. For 
instance, a type for ez similar to the above is not known. Computa­
tions confirm that a power of the log should be an expected upper 
bound for the types of classical numbers [8]. The computations ac­
tually suggest that the types differ from the log by a factor having 
lower order of magnitude. 

I believe that the continued fraction for ef which has a "formula" 

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, • • • ], 

is accidental in the sense that, say for algebraic numbers of degree 
> 2 , the continued fraction should be essentially random. I t would 
lead us too far to discuss continued fractions in detail here. We just 
mention a couple of their properties. If a is real, irrational, we let 
#o = [oc] be the largest integer ^ a. Then a —ao = 1/ai and « i > 1. Write 
«i = ai +1/ak with a positive integer ai, and continue like this. Then 
[a0, ai, #2, • • • ] is called the continued fraction for a. What matters 
for us is that the partial fractions 

[a0, ah • • • , an] = pn/qn 

provide solutions of the fundamental inequality 

| qnot — pn I < l/gn , 

and that qn+i ^ aw+ign. Thus the integers an (n^l) in some way 
measure how far apart solutions of the fundamental inequality may 
be. The nth such solution, given by the continued fraction, has an 
order of magnitude equal to the product a\ • • • an. In the case of e 



662 SERGE LANG [September 

and numbers like it, this is something like n\ (the precise function is 
given by (7.5)). For proofs, see [2], or [50]. 

8. Algebraic numbers. If a is algebraic of degree n>\ (over Q), 
then Liouville remarked that one has the trivial inequality 

\<*-p/q\ ^ c(a)/q», 

for some number c(a) which is easily computable in terms of the 
degree and discriminant of a. Indeed, let 

f(X) = cfl(X-ai) 
< - l 

be the irreducible polynomial of a = ai over 0 , taken with relatively 
prime integer coefficients, so that c is an integer ^ 1 . If p/q is close 
to a, then p/q is a t a distance from any conjugate ex,- of a approx­
imately equal to |a»—a\ . Since f (p/q) ?*Q, we get the inequality 

I /Î"É \f(P/q)\ = \c\ ft \p/q-«t\. 

The Liouville inequality follows at once from this factorization. (For 
generalizations of the Liouville inequality to polynomials in several 
variables, cf. Feldman [35], [36], [38], and [50] where some of 
Feldman's results are reproduced.) 

In particular, if a is quadratic, then a is of bounded type. I would 
conjecture that no other "natural" number has bounded type, al­
though random continued fractions with bounded entries provide 
random examples of such numbers. By "natural," I mean algebraic 
of degree > 2 , or transcendental in the field mentioned previously, 
generated by values of classical functions suitably normalized. I t is 
however unknown except in a few cases like e whether any such 
numbers are of bounded type. In particular, it is unknown for any 
algebraic number of degree > 2 , say 21/3, and for e3. 

Improvements on the exponent n in Liouville's theorem have 
proved to be very difficult to obtain. Thue and Siegel reduced this 
exponent significantly, in a manner depending on the degree, but 
Roth [72] gave the best exponent (conjectured by Siegel), namely: 

(8.1) If a is algebraic irrational, then there are only a finite number 
of solutions to the inequality ||ga|| <l/ql+*. 

The first time that the correct exponent 1+e appeared in the 
literature was in Schneider's paper [81 ]. However, in parts of his 
proof, the arguments were still too weak to give the full result, and 
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Schneider could only prove that solutions q of the above inequality 
have to tend rapidly to infinity. 

Following an idea of Siegel, Schneider considered a sequence of 
solutions pi/q% for the approximation 

I <* - pi/qi | < 1/qi * 

and constructed a polynomial in several variables F(Xi, • • • , Xm) 
such that the Taylor expansion 

F(P/q) = F(t,.../A 
\qi qm/ 

- S J K . t e . . . , ^ -«)"•• (£-.)* 
starts only with a zero of high order, the order being measured by the 
special weights 

where n , • • • , rm are the degrees of F in Xi, • • • , Xm respectively. 
By taking m large, solving appropriate linear equations, and taking 
sufficiently big gaps between the fractions pi/qu one sees that the 
value F(p/q) is small from the right-hand side if the pi/qi approximate 
a very closely. On the other hand, one can show that the linear equa­
tions achieving this can be solved with integer coefficients, and a 
denominator for F(p/q) is a t most 

qi • • ' qm. 

If F(p/q) 5*0, then multiplying by such a denominator one gets an 
integer of absolute value è 1, in other words, one gets an inequality 
on the left which contradicts the inequality on the right. Schneiders 
argument to find the polynomial F such that F(p/q) 9*0 required 
large gaps between the fractions p%lq%. Roth improved this part of 
the proof, and showed that even if one gets a polynomial F such that 
F(p/q) = 0, then some suitable derivative of F will not vanish at p/q, 
thus getting his theorem. About 20 years had elapsed since 
Schneider's proof in 1936. 

Even though the method of proof yields a bound on m (for comple­
ments on this, see Davenport and Roth [3l]), it does not yield a 
bound on the size of the approximating fractions. Thus Roth's 
theorem is called "noneffective." 

Contrary to statements sometimes made that Roth's theorem gives 
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a "best possible approximation inequality," one can ask for a better 
one, namely one can ask for the determination of a type for algebraic 
numbers having a lower order of growth than epsilon in the exponent. 
As far as I know, this was first mentioned in [48], with the possibility 
of a type (log / ) l + e , in line with the Khintchine convergence principle. 

I t is difficult to make precisely correct guesses, because within the 
range of the logarithm as a type, each number will exhibit its own 
peculiar behavior. I t is conceivable that even a type log t occurs (even 
though the sum ]T) 1/q log q diverges!). A few computations for some 
transcendental numbers definitely suggest such a low order of growth, 
fairly close to the log [8]. The Adams result for e, and further experi­
ence confirm that it is not likely that one gets precisely the logarithm 
as a type, but rather various small perturbations of it, depending on 
each particular number. 

For algebraic numbers of degree > 2 , I expect basically a random 
behavior for the continued fraction, or at most a small departure from 
the random behavior. Some tables for continued fractions of a few 
algebraic numbers confirm this [96]. There occur some exceptionally 
large values among a generally uniform random behavior. This sug­
gests the problem of determining whether such relatively large values 
continue to occur throughout the continued fraction, or whether they 
stop. If they do not stop, then the problem is to determine how they 
affect an otherwise rather smooth type. The existence of some ex­
ceptionally large integers in the continued fractions of numbers re­
lated to values of the modular function had already been observed by 
Brillhart (cf. Churchhouse and Muir [95], and also a forthcoming 
paper by Stark [97]). 

Another regularity lies in the frequency count of the numbers in 
the continued fraction. According to a theorem of Kuzmin (see [46]) 
for almost all numbers ce, the probability that the nth number an in 
the continued fraction for a is equal to a positive integer k is given by 

log2 • 
k(k + 2) 

For k = l and almost all numbers, this means that the probability 
for an — \ is approximately .41. Among the first thousand an for 
21/3, 51'3, 71'3 (say) we find that 1 occurs respectively 422, 433, 409 
times, which is rather close to the Kuzmin number. 

The structure of Schneider's argument exhibiting the exponent 
2 + e in the inequality \a—p/q\ <l/q2+* is purely combinatorial, and 
as such is applicable to more general contexts (e.g. function fields 
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with algebraically closed constant fields). I t is when dealing with alge­
braic numbers (or function fields over finite fields) that one can expect 
qe to be replaced by a function of q growing more like the log. 

Recently Schmidt [76] gave a far reaching generalization of Roth's 
theorem, by extending it to vectors of algebraic numbers. 

(8.2) Let 1, ai, • • • , anbe algebraic, linearly independent over the 
rationals. Then the inequality 

||gi«i + • • • + qnOin\\ < l/qn+e, q = max | q{\ , 

has only a finite number of solutions. 

A standard transference principle of Khintchine [24], [77], shows 
that (8.2) is equivalent with 

(8.3) If 1, ai, • • • , an are linearly independent over the rationals, 
then the simultaneous inequalities 

II II 1 

y» 

have only a finite number of solutions. 

Schmidt's proof uses the same techniques as Schneider and Roth, 
but also relies heavily on Mahler's theory of compound convex 
bodies [62]. For more details, I refer the reader to Schmidt [76], 
[77]. He also proves theorems concerning the approximation of alge­
braic numbers by other algebraic numbers. If P is a polynomial with 
integer coefficients, we let H=H(P) be the height of P , namely the 
maximum of the absolute values of its coefficients. If /? is algebraic 
and P is the irreducible polynomial for /3 with relatively prime integer 
coefficients, we let H(P) be the height of /3. Schmidt proves: 

(8.4) Let a be algebraic and let nbe a positive integer. There are only 
finitely many algebraic numbers /3 of degree ^ n such that 

. i 1 

This generalizes results of Wirsing [93], who had the weaker 
exponent 2n+e. Schmidt's exponent is best possible. It is easily seen 
that (8.4) follows from (8.2). Schmidt's results, coming 15 years after 
Roth's theorem, again constitute an impressive advance in the sub­
ject. 

Schmidt's theorem (8.4) has substance only if n is smaller than the 
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degree d of a. Indeed, one has superficially at the level of a Liouville 
estimate the better result: 

(8.5) Let a be algebraic of degree d. Then there are only finitely 
many algebraic numbers /3 such that 

i i 1 

\a - /3\ < 

A result of Wirsing gives the possibility of using the inequality 
(8.5), or even weaker ones, as a criterion for algebraicity or tran­
scendence. Indeed, Wirsing proves [94]: 

(8.6) If w is a real transcendental number, then the inequality 

#(/3) (n+1) /2+1-e 

has infinitely many solutions in algebraic numbers /3 of 
degree S n. 

The essential thing here is that the exponent depending on n may 
be arbitrarily large, whereas for algebraic numbers, it is bounded as in 
(8.5). This result of Wirsing relates to the classification of numbers by 
Mahler and Koksma [47] (see also Schneider [80]), considering the 
lower bound for a polynomial | P ( w ) | . 

Roth's theorem has £-adic analogues [71]. I t can also be axioma-
tized to cover cases in algebraic geometry, and a finite number of 
absolute values, satisfying the product formula [52], e.g. in the func­
tion field case. However, when the constant field is, say, algebraically 
closed, one does not expect the type q* to be improvable. Only when 
the constant field is finite would I expect again an improvement in the 
type, to a power of the log (assuming that the irrationality a has 
only tame ramification). 

The first improvement on the Liouville inequality which was effec­
tive is due to Baker [14], [15]. By using the same method as that for 
linear combinations of logarithms (2.3) he proves: 

(8.7) Let a be algebraic of degree n^3 and let k>n-\~l. Then there 
is a computable constant c = c(a, k) such that 

gdog q)Vk 

\\qa\\>c — 

(This is improved to k> 1 in the joint paper with Stark [18].) Thus 
the effective result is still quite far from having the best exponent on q. 
In fact, it does not yet yield the possibility of lowering the exponent n 
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in the denominator by e. However, it is significant because it allows 
us to give effective bounds for solutions of a wide class of diophantine 
equations. 

Note that Coates gives £-adic extensions to Baker's results [27], 
also announced by Feldman [40]. 

9. Some transcendence measures. Given classical numbers 
Xi, • • • , xn one is interested in a lower bound for linear combinations 

| go + qi%i + • • • + qnXn | > F(q), q = max\ qi\ , 

with sufficiently large q. Such a function F is called a measure of 
linear independence for the numbers X\, * * * , X 7i • Historically, there 
have been three levels of difficulty in determining the function F, 
namely: 

Stage 1. When F(q) = l/q^°\ and <j> is increasing to infinity. 

Stage 2. When F(q) = \/qc for some fixed number c. 

Stage 3. When F(q) = l/qn+', the best possible expected exponent 
of q, in view of Dirichlet's theorem. 

Ultimately, one wants the even better results involving the type, 
namely l/qnf(q), where ƒ grows like the log, or a power of the log. No 
such results are known at present except those mentioned in §7. We 
could call this Stage 4. This is the point of view taken in [50 ]. 

In dealing with one number x which is transcendental, one con­
siders the numbers Xi — x\ so that the linear combination above can be 
written as a polynomial in x of degree n, namely 

| ffo + ffi* + • • • + qnx
n | > F(q). 

The function F is then called a measure of transcendence for x. We 
shall summarize some of the known results, which should be regarded 
as very tentative. 

Even though the sharpest type for e became known only in 1966, 
it had been known long before that e is of type ^q€, in other words 
\\qe\\ <l/ql+€ has only a finite number of solutions. In fact, Popken 
had proved [67]: 

(9.1) Let P(X) be a polynomial of degree n with integer coefficients, 
and let H=H(P) be the maximum of the absolute value of the 
coefficients. Then there is a number c depending only on n such 
that 

I P{e) I > 
jjn+c/ log log H 
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In particular, 

\\qe\\ > 

For the proof and explicit dependence of c on n, due to Mahler, 
cf. Schneider's book [80 ]. In [48], I had already verified that the 
same argument also works for e°, where a is rational. In this connec­
tion, Mahler [63] uses some of the original formulas by Hermite to 
get similar approximation estimates to exponential and logarithms of 
rational numbers. Even though these formulas have disappeared from 
the picture for transcendence proofs, it seems that they still contain 
germs of methods which would be useful for measures of approxima­
tion, more closely related to continued fractions. 

When a is irrational algebraic, and one wants to study ea from the 
present point of view, one meets difficulties analogous to those of 
Roth's theorem. 

Siegel had a Roth type theorem for values of the Bessel function 
Jo, namely the inequality 

\\qJo(«) + q*ri(«)\\ <W+' 

has only a finite number of solutions whenever a is rational =^0, and 
similarly for a polynomial in Jo(a), JQ(O) [86]. Here again, the prob­
lem is open for algebraic a, or when one deals with J\ and X is alge­
braic irrational. (Actually in this case it is unknown if J\ is an E-
function.) Once Shidlovsky had proved his transcendence result, it 
was easy to extend Siegel's estimates to arbitrary ^-functions (see 
e.g. [49]). 

I t is unknown if a single value of the Bessel function / 0 (a ) , with a 
rational, is of type ^£g«. 

Popken also had the statement analogous to (9.1) for approxima­
tions with algebraic numbers, namely: 

(9.2) For all algebraic a of degree n and height H^ 3, one has 

| e - a | > l/Hn+i-H/iogioi^ 

where c depends only on n. 

Lower bounds which are somewhat worse for numbers a& with a 
algebraic, /3 algebraic have been obtained by Gelfond and Feldman. 
Cf. Gelfond [44], Schneider [80 ], also for further reference to the 
literature. The Gelfond result does not show that a& has type ^ ç ' . 
It is weaker, roughly like 
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A ( log log q)T 

where r is a low number like 5. The situation has been going through 
various improvements, so one must check the latest bulletins to know 
how much the 5 is reduced. From our point of view here, what matters 
is that the exponent of q is not even a fixed number, independent of q. 
The situation here is still in Stage 1. 

For logarithms of algebraic numbers, the situation is slightly better. 
Mahler [58] had proved that for a algebraic, 

Hff log «|| >l/qc 

with some fixed number c, depending only on a. Feldman, following 
results of Gelfond, improved these results, and also obtained similar 
results for approximation by algebraic numbers [59], [60], [80]. For 
7T, Mahler [60 ] had shown that for all positive q we have 

IMI > i/Y2-
(The exponent 42 can be reduced if one allows a constant factor on 
the right.) None of these results has any semblance of finality. 

The result of Baker, whose proof we sketched in §2, represented the 
first effective lower bound for linear forms in logarithms of several 
algebraic numbers. Current research is somewhere between Stage one 
and two. For instance, Feldman has reached Stage two for linear 
combinations of n logarithms of algebraic numbers, with F(q)=q~c, 
where c depends on n and the logarithms [40]. 

Baker has also proved analogous results in Stage one for elliptic 
functions, and periods of elliptic functions [12], [13]. Through 
Baker's ideas, the whole theory is now in a considerable state of flux, 
with continuous extensions of Baker's method by Baker and Feldman 
[18], [41 ]. Here again one can formulate general conjectures for 
generalized logarithms on algebraic groups, especially toruses [51 ]. 
We shall mention these in connection with the applications to dio-
phantine analysis. 

Finally we mention that Baker type results can be used to give an 
upper bound for the discriminant of an imaginary quadratic field of 
class number 1 and 2 (again, consult the latest bulletins for improve­
ments on this). I t would take us here too far afield to give more 
details, and we refer the reader to the latest papers of Baker and 
Stark [18], [16], [91 ]. 

The Riemann Hypothesis would give a very good and very effec­
tive lower bound for the class number in terms of the discriminant via 
the Brauer-Siegel theorem. I t is not clear (to me) from the present 
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proofs of Baker and Stark if very good results in estimates for linear 
forms of logarithms of algebraic numbers would give as good a bound 
as the Riemann Hypothesis. I t is also not clear to me if such results 
might in fact prove the absence of zeros of the zeta function of 
(quadratic) fields near 1. 

10. A criterion of Gelfond. Gelfond gave a useful criterion to 
prove that two numbers are algebraically independent, namely: 

(10.1) Let x be a complex number. Let a be a strictly monotone 
increasing real function tending to infinity, and assume that 
there is a number a0>l such that a(N+l) <ao<r(N) for all 
integers N>N0. Assume that f or each integer N>NQ there 
exists a nonzero polynomial FN with integer coefficients, such 
that 

\FN(%)\ <e~c*w\ 

where C=50al, and 

max(deg FN, log | FN | ) :g <r(N). 

Then x is algebraic. 

(Notation. \ FN\ is the height of FN.) In his book [44], he proved only 
a weaker version. I gave a proof in [48]. Waldschmidt has extended 
this theorem and proved interesting new applications by separating 
a into two functions, describing independently how the degree and the 
height of the polynomials FN grow [92]. 

It should be noted that the conjecture expressed at the end of 
[48], attempting to give a generalization to a criterion of algebraic 
independence for several numbers, is not valid. The expected expo­
nent for polynomials FN in several variables would be crn+1. However, 
Bombieri pointed out to me that Cassels [24] proves the existence of 
numbers whose linear combinations tend to 0 very rapidly. Indeed, 
by Theorem XIV of Chapter V, loc. cit, for every function ^( / ) , 
decreasing to 0, there exist numbers «i, a^ having the following 
property. For large positive integers q, there exist qu q2 with | g,| <q 
such that 

0 < \\qiai + q*x%\\ < t(q). 

Thus the polynomials Fq have degree 1. This is a phenomenon which 
appears only when n^2. I t is a problem to formulate those supple­
mentary hypotheses which must be added to generalize the Gelfond 
criterion to several variables. 

file:////qiai


I97i] TRANSCENDENTAL NUMBERS, DIOPHANTINE APPROXIMATIONS 671 

11. Applications to diophantine analysis. The Baker theorem (8.4) 
still corresponds to Stage 1 in the approximation theory. However, its 
effective improvement on the Liouville estimate allows affective 
bounds for the solutions in integers of a wide class of diophantine 
equations. For instance, let 

F(X, Y) = anX» + an^X^Y + . . . + a0Y» 

be a binary form of degree è 3 with integer coefficients. Let m b e a 
positive integer. Any improvement of the Liouville inequality im­
mediately shows that the equation 

F(X} Y)=m 

has only a finite number of solutions. Namely, we factor Pinto factors 
of degree 1, which are of the form (X— a(i)Y) where the a(i) are 
conjugates of an algebraic number a (if F is irreducible), otherwise 
split into families of conjugates. If p, q are integers such that F(p, q) 
— m, then it follows immediately from any improvement of Liou-
ville's inequality that the number of such p, q is finite. With his 
effective improvement, Baker is led to an estimate [14]: 

log max( \p\, \q| ) < (nH)^* + (log m)2*+2, 

where H is the height of F. 
Using his theorem on diophantine approximations, Siegel [86] 

has shown: 

(11.1) If a curve of genus è 1 is defined by an equation f (X, Y) = 0 
with an irreducible polynomial f having algebraic coefficients , 
then this curve has only a finite number of points (x, y) with 
x, y lying in the ring of algebraic integers of a number field. 

Mahler extended this by using £-adic analogues of the Thue-Siegel 
theorem, and in fact the result holds for arbitrary finitely generated 
rings (without divisors of 0) over the integers Z. Cf. [52]. Siegel's 
argument is based on a geometric version of the diophantine approx­
imation inequality. If P = (ceo, • • * , «») is a point in projective space, 
represented with projective coordinates, one can define its height. 
For instance, if the a»- are relatively prime integers, then the height 
H(P) is the maximum of the absolute values | OJ,| . The definition in 
number fields is similar. The inequality of Rotins theorem 

\a-p/q\ <l/q*+' 

then has a geometric analogue as follows. 
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(11.2) Let Vbea curve defined over a number field K. Let <j>bea non-
constant rational f unction in K(V). Let r be the maximum of 
the orders of zeros of <f>. Then there are only finitely many 
rational points P of V in K satisfying the inequality 

\<t>(P)\ <l/H(Py«*. 

This is easily reduced to Roth's theorem. For instance, if F is a 
rational curve, with function field K(x), then a rational function R(x) 
has a factorization 

*(*) = I I (* - «<)" 
where the r» are the multiplicities of the zeros and poles, and the at-
are algebraic numbers. Say K = Q. A rational point is a fraction p/q, 
and R{p/q) is small if and only if p/q approximates one of the roots of 
R(x). In that case, such a fraction stays away from the other roots, 
and the equivalence between (11.2) and Roth's theorem is obvious. 
When V is not a rational curve, one reduces the proof of (11.2) to the 
case of a rational curve by projecting. Cf. [52]. 

Siegel [86] had an analogous theorem to (11.2), but corresponding 
to the weaker approximation result which he had available at that 
time. 

In dealing with an integral point P , or say a point P such that <t>(P) 
is an integer, one gets trivially an inequality like (11.2), except that 
the exponent of H(P) on the right is much larger than the desired 
2r+e. For curves of genus 1, using the group law arising from the 
theory of elliptic functions, one can then reduce the exponent to an 
arbitrarily small one, whence the result. For curves of higher genus, 
Siegel [86] used abelian functions, and the analytic representation of 
the Jacobian variety of the curve. The arguments can be algebraicized, 
and in fact one can express the idea geometrically by saying that to 
reduce the exponent so as to apply (11.2) one must go to a covering 
of the given curve, by restricting to the curve the unramified cover­
ing of the Jacobian, obtained by division of the periods, i.e. the 
mapping 

av-*na 

on the Jacobian, for a large integer n. Cf. [52], 
These arguments are not effective in two ways: first in the non-

effectiveness of the Roth theorem, and second in the use of the 
Mordell-Weil theorem when jacking up the diophantine approxima­
tion to unramified coverings of the curve. 

For curves of genus 1, Baker and Coates [17] gave a different 
argument. Using the Riemann-Roch theorem, they reduce the study 
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of integral points on a curve of genus 1 to that of a curve in standard 
form, F2 = / (X) , which can then be handled by a reduction to Baker's 
theorem (2.3), whence they get an effective upper bound for its 
integral points. So far, this method has no analogue to curves of 
higher genus, or abelian varieties, but it is worth emphasizing that 
the Coates-Baker argument represents a new approach to the finite-
ness problems we have been discussing. 

By considering generalized logarithms on an elliptic curve, and 
using the idea that they should behave from the point of view of dio-
phantine approximations so as to be of type ^ qe, I conjectured that 
(11.2) should generalize as follows [51 ] : 

(11.3) Let A be an elliptic curve defined over a number field K. Let 
<{> be a nonconstant function in K(A). Let r be the maximum 
multiplicity of its zeros, and let m be the rank of the group of 
rational points AK of A in K. Then there should be only a 
finite number of points P in AK satisfying the inequality 

\<i>{P)\ g l/h(Py^+»i*+< 

where h(P) =log H(P) is the logarithmic height. 

Observe here that we are dealing with a lower order of magnitude 
on the right-hand side than in (11.2). Of course, a similar conjecture 
can be made in terms of a type for the logarithms of algebraic points, 
replace the h(P)€ which corresponds to qe. The inequality of (11.3) is 
equivalent to an inequality involving logs of algebraic points. Indeed, 
let Pi , • • • , Pm be free generators of AK modulo the torsion group. 
Let Uj — log Pj. Let coi, co2 be fundamental periods. Let 

P = qiPi + • • • + qmPm + Q 

where Q is in the torsion group. Since this torsion group is finite, we 
may assume that when we consider infinitely many P , the same Q 
appears. Such points P have a point of accumulation PQ. We let Uo 
= log(P0 —Ö). Then the inequality of (11.3) amounts to 

| — UQ + qiui + • • • + qmum + qm+iui + Çm+2W21 ^ l/gw+1+% 

which has the standard recognizable form. The same remark applies 
of course to ordinary logarithms. 
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