CLASSIFICATION OF THE SIMPLE SEPARABLE REAL L*-ALGEBRAS¹

BY IGNACIO UNSAIN

Communicated by M. H. Protter, October 20, 1970

A real (complex) L^* -algebra is a Lie algebra L whose underlying vector space is a real (complex) Hilbert space and such that, for each $x \in L$, there exists an $x^* \in L$ satisfying $\langle [x, y], z \rangle = \langle y, [x^*, z] \rangle$ for all y, z in L. J. R. Schue [11], [12] defined and classified the simple separable complex L^* -algebras. V. K. Balachandran [1], [2], [3], [4], [5] gave a more general setting to the techniques used by Schue for not necessarily separable L^* -algebras; he also defined the notions of real form and compact real form.

The main result of this work is the classification of the simple separable real L^* -algebras up to L^* -isomorphisms. The classification was also obtained, independently, by Mr. Pierre de la Harpe.

The following can be shown:

THEOREM 1. The complexification \tilde{L} of a simple L^* -algebra L is not simple if and only if $L = M^R$, where M is a simple complex L^* -algebra $(M^R$ denotes the real L^* -algebra obtained from M by restriction of scalars).

Therefore, the classification reduces essentially, aside from simple L^* -algebras having a complex structure which are in a one-to-one correspondence with the simple complex L^* -algebras, to the study of the real forms of all simple complex L^* -algebras.

If L is a real form of a semisimple L^* -algebra \tilde{L} , the decomposition L=K+M (Hilbert direct sum), where $K=\{a\in L: a^*=-a\}$ and $M=\{a\in L: a^*=a\}$, defines an involutive L^* -automorphism S of L ($S|K=\mathrm{id}$ and $S|M=-\mathrm{id}$) which can be extended to \tilde{L} by linearity. S is called the involution of \tilde{L} associated to L. Conversely, if S is an involutive L^* -automorphism of \tilde{L} , then S leaves the unique compact form U (set of all skew-adjoint elements of \tilde{L}) invariant and we have U=K+iM, the decomposition of U into eigenspaces of S. The real form L=K+M is said to be associated to S.

There is a one-to-one correspondence between conjugacy classes of

AMS 1970 subject classifications. Primary 22E65; Secondary 17B65.

Key words and phrases. L*-algebras, Cartan subalgebras, Cartan decompositions, Hilbert-Schmidt operators.

¹ These results are contained in the author's doctoral dissertation written under the direction of Professor Ichiro Satake at the University of California, Berkeley.

real forms and conjugacy classes of L^* -automorphisms of \tilde{L} containing an involutive element.

Following an idea of S. Murakami [9], [10], the following can be proved:

THEOREM 2. Let \tilde{L} be a semisimple complex L^* -algebra and S be an involutive L^* -automorphism of \tilde{L} . Then, there exist a Cartan subalgebra \tilde{H} and a regular selfadjoint element h in it such that: $S\tilde{H} = \tilde{H}$, Sh = h and the 1-eigenspace of S in \tilde{H} is a maximal abelian L^* -subalgebra of \tilde{K} (the complexification of K).

Having such a Cartan subalgebra it is possible to determine explicitly the structure of \tilde{K} in terms of the roots of \tilde{L} relative to \tilde{H} .

THEOREM 3. Let \tilde{L} be a simple complex L^* -algebra, \tilde{H} be a Cartan subalgebra, and Δ be the root system of \tilde{L} relative to \tilde{H} . Then, if an involutive rotation leaves a regular selfadjoint element fixed, it is a "particular rotation" (i.e. it leaves a system of simple roots invariant).

It is known, [4], that in the case of simple L^* -algebras of types A and C all Cartan subalgebras are conjugate, and in case B the Cartan subalgebras fall into two conjugacy classes. Thus, if we fix in cases A and C a Cartan subalgebra \tilde{H} and a system of simple roots π , there exists in each conjugacy class of L^* -automorphisms containing an involutive element, an involution leaving \tilde{H} and π invariant. In case B we have to take two nonconjugate Cartan subalgebras in order to get a similar result.

The classification follows easily by reducing such an involution to a normal form.

The result we obtain is exactly what we expect as an infinite-dimensional analogue of classical simple Lie algebras.

Summary of the results. Let E be a separable Hilbert space, and $\Phi = \{e_i\}$ be an o.n.b., which we are going to reorder in different ways according to the case under consideration. $\mathfrak{gl}(\infty, C)_2$, the set of all Hilbert-Schmidt operators of E, is a simple complex L^* -algebra of type A. $\mathfrak{o}(\infty, C)_2 = \{a \in \mathfrak{gl}(\infty, C)_2 : a = -a\}$ is a simple complex L^* -algebra of type B. Let $\Phi = \{e_{-1}, e_{-2}, \cdots, e_1, e_2, \cdots\}$ and $J = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, i.e. J is the bounded operator of E defined by $Je_{-i} = -e_i$ and $Je_i = e_{-i}$; then $\mathfrak{Sp}(\infty, C)_2 = \{a \in \mathfrak{gl}(\infty, C)_2 : aJ + Ja = 0\}$ is a simple complex L^* -algebra of type C. We note that in this case we can turn E into a right vector space over $K(K = \{l, i, j, ij\}_R$ the algebra of quaternions) by defining the action of j by $xj = J\bar{x}$ for all $x \in E$; an o.n.b. of E over K is $\{e_1, e_2, \cdots\}$. An element $a \in \mathfrak{gl}(\infty, C)_2$ is K-linear if and only if

 $J\bar{a}=aJ$, i.e. if a is of the form $\begin{bmatrix} a_1 & a_2 \\ a_2 & a_1 \end{bmatrix}$, and when this is so, we shall use the matrix expression of a given by a_1+a_2j , in other words, as a linear operator of E over K. We denote by $\mathfrak{gl}(\infty, K)_2$ the set of all K-linear operators in $\mathfrak{gl}(\infty, C)_2$.

The simple separable real L*-algebras having a complex structure are the real L*-algebras obtained from $\mathfrak{gl}(\infty, \mathbb{C})_2$, $\mathfrak{o}(\infty, \mathbb{C})_2$ and $\mathfrak{sp}(\infty, \mathbb{C})_2$ by restriction of scalars.

The compact simple separable real L*-algebras are

$$u(\infty, C)_{2} = \{a \in \mathfrak{gl}(\infty, C)_{2} : a^{*} = -a\},\$$

$$\mathfrak{o}(\infty, R)_{2} = \{a \in \mathfrak{o}(\infty, C)_{2} : a^{*} = -a\},\$$

$$u(\infty, K)_{2} = \{a \in \mathfrak{gl}(\infty, K)_{2} : {}^{t}\bar{a} + a = 0\},\$$

where $\bar{x} = x_0 - x_1 i - x_2 j - x_3 i j$ if $x = x_0 + x_1 i + x_2 j + x_3 i j$ in K.

In the following, \tilde{L} will denote a simple complex L^* -algebra, S an involutive L^* -automorphism of \tilde{L} , and L the real form of \tilde{L} associated to S or a real form of \tilde{L} conjugate to L.

The noncompact simple separable real L^* -algebras are

(a)
$$\Phi = \{e_1, e_2, \dots, e_n, \dots\}, \quad K_n = \begin{bmatrix} -I_n & 0 \\ 0 & I \end{bmatrix},$$

AI $\tilde{L} = \mathfrak{gl}(\infty, C)_2, \quad Sa = -{}^t a,$
 $L = \mathfrak{gl}(\infty, R)_2 = \text{all real matrices in } \mathfrak{gl}(\infty, C)_2.$

AIII(n) $\tilde{L} = \mathfrak{gl}(\infty, C)_2, \quad Sa = K_n a K_n^{-1},$
 $L = \mathfrak{u}(n, \infty)_2 = \{a \in \mathfrak{gl}(\infty, C)_2 : {}^t a K_n + K_n a = 0\}.$

BDI(n) $\tilde{L} = \mathfrak{o}(\infty, C)_2, \quad Sa = K_n a K_n^{-1},$
 $L = \mathfrak{o}(n, \infty)_2 = \{a \in \mathfrak{gl}(\infty, R)_2 : {}^t a K_n + K_n a = 0\}.$

(b) $\Phi = \{e_{-1}, e_{-2}, \dots, e_1, e_2, \dots\}, \quad K_{\infty} = \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix},$

AIII(\infty)

 $\tilde{L} = \mathfrak{gl}(\infty, C)_2, \quad Sa = K_{\infty} a K_{\infty},$
 $L = \mathfrak{u}(\infty, \infty)_2.$

BDI(\infty)

 $\tilde{L} = \mathfrak{o}(\infty, C)_2, \quad Sa = K_{\infty} a K_{\infty}^{-1},$
 $L = \mathfrak{o}(\infty, C)_2, \quad Sa = K_{\infty} a K_{\infty}^{-1},$
 $L = \mathfrak{o}(\infty, \infty)_2.$

(c) $\Phi = \{e_{-1}, e_{-2}, \dots, e_1, e_2, \dots\}, \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix},$
 $\tilde{L} = \mathfrak{gl}(\infty, C)_2, \quad Sa = -J^t a J^{-1},$

 $\tilde{L} = \mathfrak{gl}(\infty, K)_2.$

CI
$$L = \mathfrak{Sp}(\infty, C)_2, \qquad Sa = \bar{a},$$

$$L = \mathfrak{Sp}(\infty, R)_2 = \text{all real matrices in } \mathfrak{Sp}(\infty, C)_2.$$

(d)
$$\Phi = \{e_{-1}, e_{-2}, \dots, e_1, e_2, \dots\}, \quad K_{n,n} = \begin{bmatrix} K_n & 0 \\ 0 & K_n \end{bmatrix},$$

CII(n)
$$\widetilde{L} = \mathfrak{sp}(\infty, \mathbf{C})_2, \qquad Sa = K_{n,n}aK_{n,n}^{-1}, \\
L = \mathfrak{u}(n, \infty, \mathbf{K}) = \left\{ a \in \mathfrak{gl}(\infty, \mathbf{K}) : {}^t \bar{a}K_n + K_n a = 0 \right\},$$

here K_n is the operator of E over K defined by $K_n e_i = -e_i$ $(1 \le i \le n)$ and $K_n e_i = e_i$ (i > n).

$$\Phi = \{e_{-1}, e_{-3}, \cdots, e_{-2}, e_{-4}, \cdots, e_{1}, e_{3}, \cdots, e_{2}, e_{4}, \cdots\},$$
(e)
$$K_{\infty,\infty} = \begin{bmatrix} K_{\infty} & 0 \\ 0 & K_{\infty} \end{bmatrix},$$

DIII
$$\tilde{L} = \mathfrak{o}(\infty, \mathbf{C})_2, \qquad Sa = JaJ^{-1},$$

$$L = \mathfrak{o}(\infty, \mathbf{K})_2 = \{a \in \mathfrak{gl}(\infty, \mathbf{K})_2 : {}^t\tilde{a} + a = 0\},$$

here $\bar{x} = x_0 + x_1 i - x_2 j + x_3 i j$ if $x = x_0 + x_1 i + x_2 j + x_3 i j$ in K.

$$\widetilde{L} = \operatorname{\mathfrak{Sp}}(\infty, C)_2, \qquad Sa = K_{\infty,\infty} a K_{\infty,\infty}^{-1},$$

$$L = \operatorname{\mathfrak{U}}(\infty, \infty, K)_2 \qquad (\operatorname{see} \operatorname{CII}(n)).$$

As a result of the above considerations, we obtain the following:

THEOREM 4. Two real forms L and L' of a simple complex L*-algebra are L*-isomorphic if and only if the corresponding characteristic subalgebras are L*-isomorphic.

REFERENCES

- V. K Balachandran, The Weyl group of an L*-algebra, Math. Ann. 154 (1964), 157-165. MR 28 #4374.
- 2. ——, Regular elements of L*-algebras, Math. Z. 93 (1966), 161-163. MR 33 #2689.
- 3. ——, Simple systems of roots in L*-algebras, Trans. Amer. Math. Soc. 130 (1968), 513-524. MR 38 #199.
- 4. ——, Simple L*-algebras of classical type, Math. Ann. 180 (1969), 205-219. MR 39 #4684.
- 5. V. K. Balachandran and P. R. Parthasarathy, Cartan subalgebras of an L*-algebra, Math. Ann. 166 (1966), 300-301. MR 34 #3348.
- 6. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 7. S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986.

- 8. N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Appl. Math., no. 10, Interscience, New York, 1962. MR 26 #1345.
- 9. S. Murakami, On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan 4 (1952), 103-133. MR 14, 531.
- 10. ——, Sur la classification des algèbres de Lie réelles et simples, Osaka University, Osaka, Japan (mimeographed notes).
- 11. J. R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69-80. MR 22 #8352.
- 12. ——, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349. MR 24 #3242.
- 13. F. Gantmacher, Canonical representation of automorphisms of a complex semi-simple Lie group, Mat. Sb. 5 (47) (1939), 101-146. MR 1, 163.
- 14. ——, On the classification of real simple Lie groups, Mat. Sb. 5 (47) (1939), 217-249. MR 2, 5.

University of Maryland, College Park, Maryland 20742