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ABSTRACT. Let U{l} be the expected number of visits to an 
interval J of a random walk associated with a distribution on R1 in 
the domain of attraction of a stable law with exponent 4<a^U. 
Theorem A gives asymptotic expressions for U{l±t\ as t—*<». 
Such expressions are not valid when 0 < a ^ J without additional 
hypotheses on F. These are indicated in Theorem B, 

1. Theorem 1 of [3] extends to distributions on all of R1 as follows: 
(Notation as in [3] or [4, Chapter XI].) Let F be a, probability dis­
tribution on ( — co, oo ) and for any measurable set I put 

U{l} = ! > » * { / } 

finite or not. As in [3 ] we assume F is nonarithmetic. (See note (iv) in 
§2 below.) 

THEOREM A. Suppose 

(1) 1 - F(t) + F(-t) = t-*L(t), t > 0, 

and 
F(-t) q 

(2) lim —— = — 
«— 1 - F{t) p 

where 0 < a ^ l , p+q = l and L is slowly varying at «>. Then when 
! < a < l , 

lim /1-«Z,(0(^{/ + t\ + U{l - t}) 
(3) sin ira 

ir(/>2 + 2pq cos va + q2) 
and 

U{l-t\ q (4) lim _ J J_ = ± 
*-- U{l + t} p 

I\ 
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for every bounded interval I of length \l\. If a = l, p^q and 
/üoo | x\ F{dx} = oo, then (4) remains valid but (3) becomes 

(5) lim m(t)(U{l + t} + U{I - t}) = (p - q)~2\l\ 

where 

m(t) = I (1 -F(x) +F(-x)) dx~ \ \x\F{dxt, t —» oo. 
J o J - t 

We postpone to §3 the case 0 <a ^ | . 

2. Discussion, (i) Conditions (1) and (2) together are, of course, 
the necessary and sufficient conditions for F to be in the domain of 
attraction of a stable law with exponent a; see [4, p. 544]. 

(ii) Note that p—\, q = 0 in (2) includes the extreme possibility, 
previously considered in [3 ], that F(t) = 0 for all t < 0 . 

(iii) The restriction p^q in the case a = l as well as m(oo) = oo is 
essential. A random walk induced by an F for which p = qf a = l and 
7^(oo)= oo can be persistent (whether or not it is will depend on 
more detailed properties of L). If persistent U{l}, the expected 
number of visits to / , is infinite, so (4) and (5) are vacuous. If m(oo) 
< oo, F has a finite absolute mean and then the classical renewal 
theorem applies, see [5, p. 368]; a finite mean can occur only when 

(iv) The restriction to nonarithmetic distributions is not essential ; 
when F is arithmetic, Theorem A is true as stated, provided in (3), 
(4) and (5) one uses half-open intervals with length a multiple of the 
span of F. J. A. Williamson [8] has proved results similar to ours for 
discrete distributions in Rd

y d^l. See also [6]. However, these 
authors did not consider a = l, so Theorem A gives new information 
in this case. 

3. The case 0<aSh When 0<aSi in ( l ) , Theorem A is not true 
without further restrictions on F. See [8, §5] for counterexamples 
with discrete F. The following theorem gives an indication of the sort 
of restrictions needed. 

THEOREM B. Suppose F satisfies (1) and (2) and is absolutely con­
tinuous with bounded density f (t) = F'(t). Suppose further that either 

( i ) / ( 0 = O ( £ ( M ) / M « + 1 ) for alitor 
(ii) f(t) ultimately decreases as \t\ increases; or 
(iii) f(t) is absolutely continuous on \t\ ^b with f (t) = 0(L( | /1 )/111 a + 2 ) . 
Then the conclusion of Theorem A follows under (i) for \ <a S1, and 

for all 0 < a g l under (ii) or (iii). 
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Discrete versions of (i) and (ii) are known. See [8, §3] and [6, p. 
232]; see also [2] where an even stronger monotonicity condition is 
imposed. 

The proof of Theorem B is messy. I t together with applications of 
A and B to convolution type integrals and extensions to higher dimen­
sions will appear elsewhere. 

4. Proof of Theorem A. The methods of [3, §§3-6] can be straight­
forwardly adapted to construct a proof of Theorem A. Here is a 
sketch. Put <K0)=/uoo eix6F{dx} and for any / write L(t)=L(\t\), 
m{t)~m(\t\). Note that, when a = l, m is slowly varying and L(t) 
= o(w(0), *-><»; cf. [4, p. 272]. 

LEMMA 1. For 0 < c e < l , 

1 COS(TTÖJ/2) ± i(p — q) sin wa/2 \ 0 \~a 

1 - 0(0) ~ T(l - a)(p2 + 2pq cos TO + q2) L(l/0) 

as 0—>0±. If a = 1 but pT^q and m(oo ) = oo, then 

1 7T 

1 - 0(0) 2 
(P - ?)" 

dO\m(l/e)J 
+ i(p - q)~ 

dd\m(l/0)/\ 0m(l/0) 

as \d\ —>0. (77i£ rea/ and imaginary parts on the left are to be considered 
as having the corresponding asymptotic form on the right.) 

REMARK. Except possibly for the form given here when ce = l, 
asymptotic expressions for 1 —0 equivalent to those in Lemma 1 are 
well known and occur often in the literature. With the obvious modi­
fications, the method used in proving Lemma 2 of [3] can be used 
here as well. 

From now on when a = l w e assume p9^q and m( oo ) = oo. 

COROLLARY. Let g be any bounded function continuous at 0 = 0, and 
put w«(0) - Re(e~it6/(1 -0 (0 ) ) ) . If0<a<l, then 

lim | t\l~«L{t) f g(B)wt(ft) dd 

2g(0) Ç B b cos y ± d sin v̂ 
= I dy 

KY{\ - a) J o y" 

where 6 = cos wa/2, d — {p~q) sin 7ra/2 and K — p2 + 2pq cos 7ra+g2. 
When a = \ we have 
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ƒ 2^(0) / T CB sin y \ 

g(e)wt(e)dd~-^J-(-±(p--q) —dy). 
- - \e\&Bi\t\ (p — q)2\2 J0 y / 

This Corollary follows from Lemma 1 and properties of regularly 
varying functions. See Lemmas 3 and 4 of [3 ]. 

LEMMA 2. Let g be any function with compact support which satisfies 
\g(0+h)—g(6)\ = 0(h) uniformly in 0. Write p{i)^\t\l"~aL{t) when 
a<l and p(l) =m(t) when a = l. Then y f or ^<a^l and B>1, 

Km sup I P(0 f g(0)wt(6) dB = o(——\. 
U|->co I J \e\%B/\t\ I \JD*a / 

(See [3, (5.11)] or [6, §3.5].) 
From Lemma 1 and the recurrence criterion [7, p. 34] it follows 

that U{l) < oo for bounded I . Define 

/*«{ƒ} =p(t)(U{l + t} + U{-I + t}). 

LEMMA 3. For every a>0 and all X, 

/

oo /» oo 

e-«*ya(x)nt{dx} = 2p(0 ga(0 + \)wt(fi) dB 
- 0 0 ^ - 0 0 

where g«(0) = ( l / a ) ( l — |fl| /a) /or |0 | ="a, ga(0)=O elsewhere, and 
ya(x) - 2(1 - c o s ax)/a2*2 = ƒ!!«, g^ f l ( J ) <#. 

N O T E . Lemma 3 may be proved as in [3, §4]. See also [l , p. 221] 
and [5 ]. The proof is quite easy when a < 1 since in this case 11 — 0(ö) | - 1 

is locally integrable about 0 = 0. Note also that in both Lemmas 2 and 
3 one needs to know that 11— </>(0)\ vanishes only at 0 = 0. But this 
is true if and only if F is nonarithmetic. This is not a critical problem 
however, and a proof in the arithmetic case may be made using the 
methods given here. (In fact the proof is slightly less messy when F 
is arithmetic since a direct formula for the renewal measure weights 
is available; the auxiliary functions gat y a do not appear. ) See [3, 
§2(ii)]or [6] or [*]. 

Here is the proof of Theorem A. Write the integral on the right-
hand side of (6) as the sum of the integral over |0 | = 5 / M P m s the 
integral over |0 | >B/\ t\. Let t—>+ oo (or — oo) and apply the Corol­
lary and Lemma 2. Next, let B—>oo, evaluate the improper integrals 
which arise and substitute {2TÏ-)~~1J1W exp( — i\x)ya(x) dx for ga(S). 
Then, 

ƒ 00 /» 00 

e"iXxya(x)fxt{dx} = IpC I r % ( * ) dx 
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where C is the constant occurring on the right in (3) or (5). (If 
t-+~ oo, the p on the right in (7) is replaced by g = l — p.) As (7) is 
true for all a>0 and real X, it follows from [3, Lemma 8], or [l , p. 
218] that 

Ht{l}-+2pC\l\ and iu-t{l}-*2qC\l\ 

as /—> oo for every interval I. From this and the definition of JU* we 
get the conclusion of Theorem A whenever J or 7 is symmetric about 
the origin. The conclusion for arbitrary I follows by putting I — IQ+Ô 
where 70 is symmetric and observing that p(t± ô)^p(/) as /—* oo. 
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