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ABsTrACT. Let U{I} be the expected number of visits to an
interval I of a random walk associated with a distribution on R! in
the domain of attraction of a stable law with exponent § <a<1.
Theorem A gives asymptotic expressions for U{I+¢} as t—w,
Such expressions are not valid when 0 <a=} without additional
hypotheses on F. These are indicated in Theorem B,

1. Theorem 1 of [3] extends to distributions on all of R! as follows:
(Notation as in [3] or [4, Chapter XI].) Let F be a probability dis-
tribution on (— «, ©) and for any measurable set I put

vir} = X {1}
n=0
finite or not. As in [3] we assume F is nonarithmetic. (See note (iv) in
§2 below.)
THEOREM A. Suppose
(¢)) 1 —F@) + F(—1t) =t=L(@#), t>0,

and
F(—¢
(2) Iim .___(.___.).__ = ._q..
tvo 1 — F()) /4
where 0<a =1, p+qg=1 and L is slowly varying at . Then when
i<a<l,
lim 2= L(t)(U{I +t} + U{I —1})

t—w

(3 _ Sin o I
w(p? + 2pq cos wa + ¢?) 1]
and
U I —
@ im 24 _ g

e U{I+1) 5
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for every bounded interval I of length |I | . If a=1, p#q and
J2w | x| F{dx} = o, then (4) remains valid but (3) becomes

(5) lim m(i)(U{I+ 1} + U{I —t}) = (p — 92| I|

i—

where

m(L) =f‘(1—F(x)+F(—x)) dx ~ ‘leF{dx;, t— oo,

We postpone to §3 the case 0<a <3.

2. Discussion. (i) Conditions (1) and (2) together are, of course,
the necessary and sufficient conditions for F to be in the domain of
attraction of a stable law with exponent «; see [4, p. 544].

(ii) Note that p=1, ¢=0 in (2) includes the extreme possibility,
previously considered in [3], that F(f) =0 for all £ <0.

(iii) The restriction pq in the case a=1 as well as m(®o) = » is
essential. A random walk induced by an F for which p=¢, =1 and
m(w)=c can be persistent (whether or not it is will depend on
more detailed properties of L). If persistent U{I }, the expected
number of visits to 7, is infinite, so (4) and (5) are vacuous. If m(«)
< 0, F has a finite absolute mean and then the classical renewal
theorem applies, see [5, p. 368]; a finite mean can occur only when
az=1.

(iv) The restriction to nonarithmetic distributions is not essential;
when F is arithmetic, Theorem A is true as stated, provided in (3),
(4) and (5) one uses half-open intervals with length a multiple of the
span of F. J. A. Williamson [8] has proved results similar to ours for
discrete distributions in R4, d=1. See also [6]. However, these
authors did not consider a=1, so Theorem A gives new information
in this case.

3. The case 0<a=<3. When 0<a=3%in (1), Theorem A is not true
without further restrictions on F. See [8, §5] for counterexamples
with discrete F. The following theorem gives an indication of the sort
of restrictions needed.

THEOREM B. Suppose F satisfies (1) and (2) and is absolutely con-
tinuous with bounded density f(t) = F'(t). Suppose further that either

() f@O=0(|t|)/|t| =) for allt; or

(ii) f(t) ultimately decreases as |t| increases; or

(i) f(t) is absolutely continuous on |t| Zb with f'(f) = O(L(|t])/|¢] =+2).

Then the conclusion of Theorem A follows under (i) for 1 <a =1, and
for all 0<a =1 under (ii) or (iii).
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Discrete versions of (i) and (ii) are known. See [8, §3] and [6, p.
232]; see also [2] where an even stronger monotonicity condition is
imposed.

The proof of Theorem B is messy. It together with applications of
A and B to convolution type integrals and extensions to higher dimen-
sions will appear elsewhere.

4. Proof of Theorem A. The methods of [3, §§3-6] can be straight-
forwardly adapted to construct a proof of Theorem A. Here is a
sketch. Put ¢(0) =/". e F{dx} and for any ¢ write L(t) =L(|t|),
m (L) =m([t|). Note that, when a=1, m is slowly varying and L(¢)
=o(m(t)), t— o ;cf. [4, p. 272].

LEMMA 1. For 0<a<1,
1 cos(ma/2) + i(p — q) sin 7a/2 ] 0 I—“
1 — ¢ TA— a)(p*+ 2pgcoswa+ g% L(1/6)

as 0—0%, If a=1 but ps%q and m(») = o, then

1
6m(1/)

L
1_¢(0)N7(P"q

:ig(m(ll/ﬂ)>l i~

as IGI —0. (The real and imaginary parts on the left are to be considered
as having the corresponding asymptotic form on the right.)

REMARK. Except possibly for the form given here when a=1,
asymptotic expressions for 1 —¢ equivalent to those in Lemma 1 are
well known and occur often in the literature. With the obvious modi-
fications, the method used in proving Lemma 2 of [3] can be used
here as well.

From now on when a =1 we assume p#qgand m(o) = o,

COROLLARY. Let g be any bounded function continuous at =0, and
putw,(0) =Re(e~®/(1—¢8))). If 0<a <1, then

lim | ¢]-eL(@) ¢(B)w.(6) do
Ui 101sB/1t]
2¢(0) B bcosyidsinvd
DN ¥ g

where b=cos ma/2, d=(p—q) sin wa/2 and K =p*+2pq cos ma+q2.
When a=1 we have
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sin
4 dy) .
y

This Corollary follows from Lemma 1 and properties of regularly
varying functions. See Lemmas 3 and 4 of [3].

. _ 2O (7 o
lim m(f) g0)w.(6) do = 5 ( (-9 fo

ok 1615B/14] (p—q2\2

LEMMA 2. Let g be any function with compact support which satisfies
|g(0-+n)—g©0)| =0(h) uniformly in 6. Write p(t)=|t|==L(t) when
a<land p(t) =m(t) when a=1. Then, for 1<a =1 and B>1,

101zB/14

( 1
—0 )
B2a—1
(See [3, (5.11)] or [6, §3.5].)
From Lemma 1 and the recurrence criterion [7, p. 34] it follows
that U{I} < for bounded I. Define

wlI} = pO(U{I + 1} + U{=1 +1}).
LeMMA 3. For every a>0 and all N,

lim sup

lt]—

o(2) g0)w.(0) do

(6) fwe—m a(x),ut{dx} = 2p(9) fwga(() + N w:(6) do
where g.(0)=(1/a)(1—0]/a) for |6| Za, g.0)=0 elsewhere, and
Ya(x) =2(1 —cos ax) /a2 =2 ei*g,(0) df.

NortE. Lemma 3 may be proved as in [3, §4]. See also [1, p. 221]
and [5]. The proof is quite easy when a < 1 since in this case i 1—-¢(0) l -1
is locally integrable about 8 =0. Note also that in both Lemmas 2 and
3 one needs to know that |1 —¢(0)| vanishes only at §=0. But this
is true if and only if F is nonarithmetic. This is not a critical problem
however, and a proof in the arithmetic case may be made using the
methods given here. (In fact the proof is slightly less messy when F
is arithmetic since a direct formula for the renewal measure weights
is available; the auxiliary functions ga, v. do not appear.) See [3,
§2(ii)] or [6] or [8].

Here is the proof of Theorem A. Write the integral on the right-
hand side of (6) as the sum of the integral over |8 <B/|t| plus the
integral over |6| >B/|¢|. Let t—+ o (or — ) and apply the Corol-
lary and Lemma 2. Next, let B—«, evaluate the improper integrals
which arise and substitute (27)~1fZ. exp(—2Ax)y.(x) dx for g.(\).
Then,

©

) lim e“’""ya(x)p,{dx} = 2pC f °<’e"'”'y,,(ac) dx

{— o —o0
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where C is the constant occurring on the right in (3) or (5). (If
t—— o, the p on the right in (7) is replaced by ¢g=1—2.) As (7) is
true for all a>0 and real }\, it follows from [3, Lemma 8], or [1, p.
218] that

pe{I} = 2pC|I| and w_{I} —2C|I]

as t— for every interval I. From this and the definition of u, we
get the conclusion of Theorem A whenever I or I is symmetric about
the origin. The conclusion for arbitrary I follows by putting I = Iy+9
where T, is symmetric and observing that p(t +8)~p(¢) as t— .
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