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Introduction. We wish to summarize here some new asymptotic
fixed point theorems. By an asymptotic fixed point theorem we mean
roughly a theorem in functional analysis in which the existence of
fixed points of a map f is proved with the aid of assumptions on the
iterates f» of f. Such theorems have proved of use in the theory of
ordinary and functional differential equations (see [7], [8], [9] and
[15]). It also seems likely that many of the fixed point theorems which
have been used in nonlinear functional analysis can be unified by
obtaining them as corollaries of general asymptotic fixed point the-
orems. These theorems also give new results, of course.

In our first section we restrict attention to continuous maps f de-
fined on closed, convex subsets of Banach spaces. We obtain a general
fixed point theorem (Theorem 1 below), and we prove that certain
fixed point theorems of R. L. Frum-Ketkov [5], F. E. Browder [1],
[2], W. A. Horn [6], G. Darbo [3], the author [11], [12], [13] and
others follow as corollaries. In the second section we consider maps
defined on more general spaces than closed, convex subsets of Banach
spaces, and we generalize some of the results of §1.

1. We begin by recalling some notation from [11]. If U is a closed
subset of a Banach space X, we shall say that UES if there exists a
closed, locally finite covering {C;}jes of U by closed, convex sets
C;CUCX. We shall say that UEGS, if there exists a finite number of
closed, convex sets Cy, Cy, -+, Ca in X such that U=U}.; C;.

The basic lemma in all our work is the following geometrical result,
which can be viewed as a generalization of a theorem of Dugundji
[4]. If X below is a locally convex topological vector space, the same
conclusions hold, with the exception that R may not be a retraction.

LemmMaA 1. Let C and D be closed subsets of a Banach space X with
CDOD. Assume that C=U;.; C; and D=U}., D;, where C;DD;and C;
and Djare closed, convex subsets of X for 1 =j=n. Suppose that, for each
subset JC {1, 2, - - -, n}, Njes C; is nonempty if and only if N;jes D;
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is nonempty. Then there exists a continuous retraction R:C—D such
that R(C;)CCjfor 1=j=<mn.

THEOREM 1. Let G be a closed, convex subset of a Banach space X
and f:G—G a continuous map. Assume there exist a sequence of non-
empty sets {Un:lSm< o }, UnCG for 1 =m< o, a sequence of non-
negative real numbers {r,,,} such that liMmy,e 7n=0, and a nonempty
compact set M CX such that the following conditions hold:

(1) Un€ETFoand f(Up)CUn for 1=m< o,

(2) UnCN,,(M)={xEG:d(x, M) <rn}.

(3) Given any compact set ACG and any Un, 1 Sm < «, there exists
an integer N (depending on A and U,) such that f¥(4) CUn.

Then Agon(f| Un), Leray’s gemeralized Lefschetz number for f re-
stricted to U, (see [10]), is nonzero for all m, and f has a fixed point.

The proof runs roughly as follows. By using Lemma 1 and some
elementary facts about the generalized Lefschetz number, one proves
that Age (f| Um) #0. Since UnEF, and since UnC N,,, (M), one proves
that Up=UX? Cim, where C;n are closed convex sets of diameter
less than or equal to s, and limp.,e Sn=0. By using Lemma 1, one
proves that there exists a continuous map Ryt Un— Un such that the
range of R, lies in a finite-dimensional subspace F,, of X and R(Ci,m)
CCim for 1=2i=n(m). Since R,f and f are homotopic in Upn,
Agon(Ruf | Um) 50. If K= Un\ Fo, which is a compact, metric ANR,
this implies that Agen(Rmf| Km)#0, and since the ordinary Lefschetz
fixed point theorem applies to K, Raf has a fixed point ¥, E K. One
proves that ||f(%m) — %m|| < sm. Since d(%m, M) <7., % has a convergent
subsequence approaching some point x & MMNG, and clearly f(x) =x.

Our first corollary was obtained by F. E. Browder (see [1, Theorem
16.3]) for the case of Hilbert spaces. Browder’s proof does not seem
to generalize directly to Banach spaces.

COROLLARY 1. Let G be a closed, convex subset of a Banach space X
and f:G—G a continuous map. Assume that there exists a compact set
MCX and two sequences of positive numbers {ar} and {b.} with
a,> by and limy,, ar =0 such that

(1) for each open neighborhood W of M in X and each x EG, there
exists an integer N (depending on x and W) such that fr(x) EW for
n=N;

(2) fmaps No (M) = {xEG:d(x, M) <ak} into Ny (M) for all k= 1.
Then f has a fixed point.

Proor. For each m =1, let x; ., be an (@¢n—>bn)/2 net for M, 1 =4
Sn(m). Let Uin={2EG:||x—%in|| Sam} and let Un=UmU; m
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It is not hard to check that all the conditions of Theorem 1 hold with
M and {Un} as above.

Our next corollary was claimed by R. L. Frum-Ketkov [5] for the
case that G is a closed ball in a Banach space, but Frum-Ketkov's
proof appears to be incorrect. A correct proof for the case of a closed
ball in a so-called m-space was given in [12] and [13].

COROLLARY 2. Let G be a closed, convex subset of a Banach space X
and f:G—G a continuous map. Assume that there exists a compact,
nonempty se¢ M C X and a constant k<1 such that d(f(x),M)
Skd(x, M) for all xEG. Then f has a fixed point.

Proor. This is a very special case of Corollary 1.

CoROLLARY 3. Let G be a closed, convex subset of @ Banach space X
and f:G—G a continuous map. Assume that there exists a compact,
nonempty set M CG such that:

(1) D CM.

(2) Given any compact set AC G and any open neighborhood W of M,
there exists an integer N (depending on A and W) such that f*(A)CW
for n=N.

(3) There exists an open neighborhood V of M such that f | Visa
E-set-contraction k<1. (See [11] for definitions.)

Then iag(f,V), the generalized fixed point index defined in [11], is
nonzero, and f has a fixed point.

Corollary 3 follows from Theorem 1, but the argument is more in-
volved than for Corollary 1. Corollary 3 immediately implies a the-
orem of G. Darbo [3] and the final two theorems given in [11].

Before stating our next corollary, we recall some further notation.
If G is a topological space, f:G—G a map, and 4 a subset of G, the
orbit of 4 under f, O(4), is Ujz0f/(4) (f°(4) =A4). If f and G are as
above, we write Co(f, G) =Nuz1f*(G).

COROLLARY 4. Let G be a closed, convex subset of a Banach space X
and f:G—G a continuous map. Assume that

(1) C,(f, G) kas compact closure.

(2) If A is any compact subset of G, the orbit of A has compact closure.

(3) There exists an open neighborhood V of cl(Cy(f, G)) such that
f | V is a k-set-contraction, k<1.

Then ig(f, V)#0 and f has a fixed point.

Proor. One can prove this follows from Corollary 3 with M
=cl(Cx(f, G)).
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Our next corollary is obtained by F. E. Browder in [1] and in less
generality by H. Steinlein [14].

COROLLARY 5 (BROWDER [1]). Let G be a closed, convex subset of a
Banach space X and f:G—G a continuous map. Assume that

(1) Co(f, G) has compact closure.

(2) For each point x EG, the orbit of x has compact closure.

(3) There exists an open neighborhood V of cl(Co(f, G)) such that
f(V) has compact closure.

Then i¢(f,V)#0 and f has a fixed point.

Proor. With the aid of some lemmas of A. Gleason and R. S.
Palais (unpublished) one can prove that under the above hypotheses
the orbit of a compact set in G has compact closure. Corollary 5 now
follows from Corollary 4.

CoRrROLLARY 6 (W. A. HorN [6]). Let G be a closed, convex subset
of a Banach space X and f:G—G a compact map (f is continuous and
takes bounded sets into precompact seis). Assume there exists a bounded
set E such that for each x EG there exists an integer m(x) =m such that
fm(x) EE. Thenie(f, G) #0 and f has a fixed point.

Corollary 6 also holds for f a k-set-contraction, k<1, with the
added assumption that f(E) CE. For f compact this assumption is
unnecessary.

2. In this section we state some fixed point theorems for maps
defined in spaces GEF. Our results here are more tentative than
in §1.

Before stating our second theorem, recall that a topological space
K is contractible in itself to a point if there exists x¢&K and a con-
tinuous map F:K X [0, 1]—=K such that F(x, 0)=x and F(x, 1) =x,
for all xEK.

THEOREM 2. Suppose that GESF, U is an open subset of G and
f:U—U is a continuous map. Let p:[0, a]—=[0, a] (a>0) be a de-
creasing real-valued map which is continuous from the right and is such
that p(r) <r for 0<r<a. Assume also

(1) there exists a compact set M C U such that

N.(M) = {x €G:d(x,N) <a} CU

and f(N.(M))CN,o(M) for 0Sr=Za.
(2) If W is any open neighborhood of M and x &G, there exists an
integer N (depending on x and W) such that f¥ (x) EW.
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(3) There exists a compact set K EFo such that MCKCU and such
that K is contractible in itself to a point.
Then f has a fixed point.

A number of generalizations of Corollary 2 follow trivially from
Theorem 2, using p(r) =kr, k<1.

THEOREM 3. Suppose that GEF, U is an open subset of G and
f:U—>U s a continuous map. Assume that there exists a compact sel
MCU for which if A is any compact subset of U and W any open
neighborhood of M, there exists an integer N such that f~(A)CW for
n= N. Assume that there exists an open netghborhood V of M such that
f | V is a k-set-contraction, k<1. Finally suppose that there exists a
compact set K EFg such that M CKCU and K s contractible in itself.
Then i¢(f,V)#0 and f has a fixed point.

Theorem 3 is closely related to results in [11], [12] and [13], but
it does not appear directly comparable.

The usual assumption above that GEF is unnecessarily restrictive.
It suffices that G is a complete metric space and, for each ¢>1, there
exist an isometric imbedding of G into G.&F and a retraction 7, of
some open neighborhood U, of j.(G) onto j.(G) such that 7. is a c-set-
contraction. The following simple proposition is an application of
this observation.

PROPOSITION. Let X be an infinite-dimensional Banach space and
S={x:||x|| =1}. Then if f:S—S is a k-set-contraction, k<1, f has a
Sfixed point.
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