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Let RN denote real iV-dimensional Euclidean space. Then it is a 
well-known fact that the imbedding of the Sobolev space Wi,2(RN) 
in LP(RN) is bounded for 2g>pS2N/(N-2), but is definitely not 
compact. Consequently the theory of critical points for general iso-
perimetric variational problems defined over arbitrary unbounded 
domains in RN has been little investigated despite its importance. 
Indeed the usual proofs for the existence of even one critical point for 
such problems requires the verification of some compactness criterion 
(such as Condition C of Palais-Smale). For quadratic functional, 
such as arise in the study of the spectrum of a linear elliptic partial 
differential operator L of order 2m defined on RN, many compact 
imbedding theorems have been obtained in recent years [ l ] , [2], [3]. 
These results yield, in turn, interesting facts concerning the discrete 
spectrum of L. In this note we extend these compactness results to 
insure the existence of critical points for certain isoperimetric varia
tional problems arising in the study of eigenvalue problems for non
linear elliptic partial differential equations. The existence of sta
tionary states for nonlinear wave equations [4] provides a natural 
example for which our results are useful. 

1. Imbedding theorems. Throughout this note let Ö be an arbitrary 
(not necessarily bounded) domain in RN whose boundary dQ, is 
mildly smooth (say locally Lipschitzian). By W8tP(ti) we denote the 
Banach space of functions u(x) defined on £2 such that u and all its 
partial derivatives up to and including order s are in Lp(ti) (i.e. 
D«uELp(ti) for \ct\ ^s). The norm in W9tP(Q) (denoted by || ||tiP) is 
I M U P ^ { 2l«is« ll^*wIUî}1/p' I n order to state results on the im
bedding of Wa,p(Q) we introduce the functional Ma,P,a(w) for any 
measurable function w(x) defined on fl, a+iV>0, and \<p< oo by 
setting 

Jf«,Pio(w) = sup I | w(y) \pua(y)dy 
x ** l«-»l<l;»SQ 

wherecoa(#) = \x\a fora<0 andxEfi; 1 fora^O andx££2. 
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Actually we imbed W9tP(ü) in an Lq(ti) space whose norm is 
weighted by the function w(x) provided Ma,Ptn(w) < <*>. This fact 
can be expressed as follows: 

THEOREM 1. Let ti be any domain in RN, and w(x) a measurable 
function defined on Q. Then the linear multiplication map Lu=w-u is 
a bounded linear map from W9tP(Q) to Lq(Q) provided s > 0 ; q*£p>l; 
l/q>l/p-s/N; Ma$qM(w)<<*> and ~N<a<q(s-N/p). Further
more 

\\w'u\\0,q é c[Matq,ü(w)]lfq\\u\\9,P 

where c is a constant depending only on p, q, s, N, Q and a. Under the 
above hypotheses, the map L is compact provided 

ƒ I w(y) \qdy—>0 as \ x| —» a>. 

Moreover the above results hold if 5 is fractional as in [S]. 
As an illustration of this theorem, even if the origin is in Q and \x\ 

denotes the distance from the origin, then we have 

COROLLARY 2. Let s>0;q*£p>l and suppose0<f3<s+N(l/q — l/p). 
Then the map Lu = \x\^u is a bounded compact linear map from 
W9tP(Q) to Lq(Q). Furthermore, there is a constant C, independent of u, 
such that 

|| M-^IU =s c|MU 
REMARKS. 1. The number j3 of Corollary 2 is sharp in the sense that 

if P^s+N(l/q — 1/p), then the map L is no longer compact, in 
general. 

2. Theorem 1 and Corollary 2 apply as stated when W,,P(Q) is 
replaced by the usual HSfP(Q) spaces* 

2. Critical point theory for isoperimetric variational problems. 
As a typical application of the previous compactness results, con
sider the following problem: 

(P) Determine the critical points S of the functional %{u) 
^fciAix, uy • • • , D8u) subject to the constraint defined by (B(w) 
«= JQ B(X, U) = const, where £2 is an arbitrary domain in RN. 

Here we determine conditions on the functions A and B such that 
(i) the set S is nonvacuous and (ii) the critical point theories of Morse 
and Ljusternik-Schnirelmann are applicable to (P). To this end we 
suppose that for some positive integer s and some positive number p 
( l < £ < o o ) , %{u) is defined for all uE.W9tP(tt). We assume, for 
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simplicity, that A is a C2 function of its arguments, and denote the 
derivative of %{u) by W(u). Then we suppose: 

(a) %(u)—>oo as |M|.,p-*«>; 
(b) W(u) is a bounded, continuous map of W9,p(Q)—>W-9tP*(Q) 

(where l/p + l/p*=*l). 
(c) §I'(w) has the following closure property: if Un-^u weakly in 

W9tP(Q) and S t ' O O - ^ strongly in ÏF_,p*(î2), then 3t'(tt) =»• (This 
holds if, for example, 31' is a monotone map.) 

Concerning the functional (B(w) we suppose 
(d) |-B(x, « ) | ^k(x)uq where q and &(#) are so chosen that the 

linear map Lu = (k(x))llqu is a compact map of W9tP(Q)—>Lq(Q) 
(in accord with Theorem 1). 

(e) B(x, u) is C1 in w, Bu(x, u) is Lipschitz continuous in u, and 
measurable in x for fixed w, with uBu{x, u)>0 for w^O. 

THEOREM 3. Under the hypotheses (a)-(e) above, the functional %{u) 
defined on the hypersurface 2nfl#= {w| M G ^ ^ Q ) , (B(W) = i£, JR a £0si-
tóz/e constant} iw PF«,p(Ö) satisfies the Palais-Smale Condition C, awd 
consequently inimR %(u) is a critical point of %(u) on MR. 

REMARK 3. An analogue of Theorem 3 holds for the conjugate 
variational problem (P*) (i.e. the critical point set of (&(u) on the 
hypersurface 3I(w)=i? in WStP(Q)) under appropriate coerciveness 
conditions on the form (u, Au). As a simple example, consider 

THEOREM 4. Suppose A is a locally Lipschitz continuous bounded 
map from WS,P(Q)—»W_,,P»(Î2) such that (u—v, Au—Av)^c\\u--v\\p 

for some constant c>0 independent of ut vÇzW9tP(Q). Then, if the func
tional <B(w) satisfies (d) and (e) above, [B(u)]~~l defined on the hyper
surface %{u)=R in W9tP($) satisfies the Palais-Smale Condition C. 
Thus if %{u) and (&(u) are even functionals, the operator equation 
Au =\Bu has a countably infinite number of distinct solutions (un, Xn) 
with 2t (un) = i ? and Xn-*oo. 

REMARK 4. Theorem 3 can be easily extended to hold for functionals 
(&(U)—JQB(X, u, • • • , D8~lu), since Theorem 1 can be generalized 
to the case of maps L: W9lP(Q)—>Wt,q(Q) with s > / in a straightforward 
way. 

Furthermore Theorems 3 and 4 hold when W9tP(Q) is replaced by 
appropriate closed subspaces so that the desired critical points 
satisfy null self ad joint boundary conditions. 

3. A nonlinear effect. The above results imply that the solvability 
of isoperimetric variational problems for unbounded domains re-
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quires some decay a t infinity for the functional (B(w). For many non
linear problems this decay need not appear explicitly. Indeed, con
sider the following simple special case (P) of the problem (P) with 
9I(w)=/*»( |Vw| 2+w 2 ) and (B(w) = ƒ** F(u) (N>1). To apply the 
results of §§1, 2 to this problem, the following transformation is 
useful. Restrict attention to functions u(x) which depend only on 
| x\ = r , and set v(r) =r(N"1)i2u(\x\ ). Then the appropriate functionals 
are 

and 

F(r«-N»2v)r(N - \)dr 
o 

over TFi,2(0, oo). Applying Corollary 2 and the Ljusternik-Schnirel-
mann theory of critical points, we find 

THEOREM 5. Suppose (i) F'(y) is Lipschitz continuous and odd with 
F'(y)y>0 and (ii) \F(y)\ Sk\y\* for some 2<<r<2N/(N-2), then 
the critical point set S of P is nonempty, furthermore the critical point 
set S* of the conjugate variational problem (P*) contains a countably 
infinite number of distinct points. Consequently the equation Au—u 
+\F'(u) = 0 has a countably infinite number of distinct normalized 
radially symmetric solutions (un, X«) with Xn—» oo as n-> <». 
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