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The aim of this note is to prove the statement in the title which is 
the natural generalization of the classical theorem of N. Lusin for 
separable metrizable spaces; for historical remarks and classical proof 
see K. Kuratowski [9, §28]. 

If P is a topological space we let Baire (P) denote the set P en­
dowed with the <7-algebra of all Baire sets in P . Recall that the collec­
tion of Baire sets in P is the smallest cr-algebra of sets such that each 
real valued continuous function is measurable. A mapping ƒ :P—>Q of 
topological spaces is called Baire measurable or simply measurable, if 
jf:Baire(P)—»Baire (Q) is measurable. A mapping ƒ :P—*(? of measur­
able spaces is called quotient if ƒ is surjective measurable mapping 
such that XQQ is measurable if jT"""1 [-X"] is measurable. Now we are 
prepared to state our main result; the reader may also read an inter­
esting corollary in Theorem 9 below. 

THEOREM 1. Let f be a Baire measurable mapping of an analytic 
topological space A into a metrizable space M. Then the graph p of ƒ, and 
Q =ƒ [P] , are analytic, and the mapping f \ A—>Q is a measurable quotient 
mapping. 

I t should be remarked that Theorem 1 is highly non trivial, and that 
we need the whole machinary of analytic spaces theory for the proof. 
Recall that a separated space A is called analytic if there exists an 
upper semicontinuous compact valued (abbreviated to usco-compact) 
correspondence of the space S of irrational numbers onto A. Thus for 
completely regular spaces the analytic spaces are just the X-analytic 
spaces introduced by G. Choquet [2], [3]. In this note we will work 
in the class of all completely regular spaces, and the reader familiar 
with [ó] will observe immediately that Theorem 1 holds for analytic 
spaces as defined in [6] for general topological spaces. For the 
convenience of the reader we summarize all requisite facts about 
analytic spaces. 
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PROPOSITION, a. Every analytic space is Lindelof, and the class of 
analytic spaces is closed under continuous mappings and countable 
products. 

j3. The collection of all analytic subspaces of any space is closed 
under the Souslin operation. Thence, every Baire set in an analytic space 
is analytic. 

y. If X and Y are disjoint analytic subspaces of a space P {com­
pletely regular)) then XC.BQP — Y f or some Baire set B in P. In par­
ticular, if X and P—X are analytic then X is a Baire set in P. 

h. If P is a metrizable uncountable analytic space then there exists a 
set X in P which is not a Baire set. 

€. Every separable metrizable space is a one-to-one continuous image 
of a closed subspace of the space 2 on irrational numbers. 

All statements except ô can be found in [6] or [7]; the reader 
familiar with older papers by G. Choquet or the author or C. A. 
Rogers or M. Sion on descriptive theory can prove these results 
without any difficulty. For a proof of assertion ô, it is enough to know 
that such P contains a subspace P' homeomorphic to the Cantor set 
2^ o; indeed there are at most 2^ o Baire sets in P because P is separable, 
and 2̂ o has more than 2^ o subsets. A standard reference for S is [9]. 

In the proof of Theorem 1 we need the following simple consequence 
of the author's generalization y [5] of the Lusin's 1st principle. 

THEOREM 2. If g is a continuous mapping of an analytic space P 
onto a space Q (completely regular l)9 then f is a measurable quotient (and 
by a, Q is analytic). 

PROOF. If g-^X] is a Baire set in P, then g-^X] and P-g-^X] 
are analytic, hence X and Q—X are analytic by ce, and finally X is a 
Baire set by 7. 

PROOF OF THEOREM 1. By Theorem 2 it is enough to show that p is 
analytic. Indeed, the projections of p onto A and Q are continuous, 
hence they are measurable quotient mappings ;thus {x—>(x, fx)} :A—»p 
is a measurable isomorphism, and {(x, fx)—>fx\ :p—*Q is a measurable 
quotient, and finally ƒ is a measurable quotient. 

The proof of analycity of p will be given in three steps. 
A. First assume that M is separable. Obviously we may (and shall) 

assume that M is completely metrizable. By Proposition e there exists 
a one-to-one continuous mapping h of a closed subspace F of 2 onto 
M• We shall think of S as the product space NN where N stands for 
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the set and also the discrete space of natural numbers. Let 5 denote 
the set of all finite sequences of natural numbers, and for each s G -S 
let 2s denote the set of all <r in 2 which extend s. We shall write s<a 
if 5 is a restriction of o\ Thus 2s = E{or|<7G2, $<<r}. Clearly 
{2s 15 G 5} is a base for open sets in 2 . Now for each sin S put 

Xs = h[F H 2s], Ys = f-x[Xs] X Xs. 

By Theorem 2, each Xs is a Baire set in M> thence f~x [Xs] is a Baire 
set in A, and finally Ys is a Baire set in A X M by Proposition j3. 
Since ^4XAf is analytic (by Proposition a ) , each Fs is analytic by 
Proposition /?. We shall prove that p is the Souslin set determined 
by { F s | s G 5 } , i . e . 

p = U { f i { F s | s < < 7 } | < 7 G 2 } . 

I t will follow from Proposition /3 that p is analytic. The inclusion C is 
obvious. For the proof of the converse inclusion, choose any point 
z = (x, y) in i X M ~ p . Given any element a in 2 we shall find an 
s<(T such that z^ Ys. If or(£F, then FfYSs = 0 for some s <cr, thence 
Xs = 0 , thence Ys = 0 . Now let aÇzF. By the continuity of A, if y^hcr 
then 3>(J:Xs for some s<<r, and if y = ha then fxd^Xs for some s<<r 
because y^fx. In both cases 2 $ Ys. The proof is finished. It should be 
remarked that using the concept of a Souslin set over a space [8] 
one can omit the use of 2 . 

B. Now assume that Q is separable (M need not be separable). 
Case A applies to the closure of Q in M, and a simple argument gives 
the result. 

C. I t remains the case when Q is not separable. Assume that Q is 
not separable; we shall derive a contradiction. There exists a closed 
discrete subspace H of Q of cardinal fc$i. Since jf-1 [H] is a Baire set, 
and hence an analytic space, we may assume that H=Q. Take any 
one-to-one continuous mapping g of Q onto a separable metrizable 
space K. The composite h = gof is Baire measurable (since g is con­
tinuous). Case A applies (with ƒ replaced by h), and hence h is a 
measurable quotient, and i£ is analytic. Since h is quotient, g must be 
quotient, hence a measurable isomorphism. Each subset of Q is a 
Baire set, hence each subset of K must be a Baire set, but this con­
tradicts Proposition S. This concludes the proof of Theorem 1. 

In conclusion we shall state several corollaries to Theorems 1 and 2 
to accent the main consequences; then we give several examples to 
help the reader to understand the assumptions, and finally we con­
sider the case when A is borelian. 

A measurable space P is said to be analytic or compact or metriz-



I970Î A MEASURABLE MAP WHICH IS QUOTIENT 1115 

able or separable if P = Baire (Q) where Q is a topological space which 
is, respectively, analytic or compact or metrizable or separable 
metrizable. I t is easy to see that P is separable if and only if the <r-
algebra of measurable sets is countably generated. In fact separable 
spaces are often called countably generated. 

THEOREM 3. Every measurable mapping of an analytic measurable 
space onto a separable one is a quotient mapping, and the range is 
analytic. 

THEOREM 4. If Pis metrizable, and if Baire (P) is analytic, then P is 
analytic. 

THEOREM 5. Every analytic uncountable topological space contains a 
nonmeasurable set. 

THEOREM 6. If an analytic space P measurably maps onto an un­
countable separable space, then P contains an analytic subset that is not a 
Baire set. 

PROOF. Theorems 3 and 4 are particular cases of Theorem 1. For 
Theorem 5 Proposition ô is needed, and for Theorem 6 one should 
know that in any separable metrizable analytic space there exists an 
analytic $et which is not a Baire set. 

EXAMPLE 1. There exists a measurable one-to-one mapping ƒ of the 
closed unit interval P onto a compact space Q which is not an isomor­
phism. E.g., take for Q the set P endowed with the compact topology 
such that 0 is the only cluster point of Q, and let ƒ be the identity. 

EXAMPLE 2. Let R be the space of reals, and let Q be R endowed 
with the topology having the collection of all left open intervals for an 
open base. Then Baire (R) = Baire (Q), Q is hereditarily Lindelof, 
and Q is not analytic because QXQ is not Lindelof (not even normal; 
consider the set of all (x, —x)). 

A space P is called borelian if there exists a disjoint usco-compact 
correspondence of 2 onto P. 

THEOREM 7. If in Theorem 1 the space A is borelian, then p is 
borelian, and hence Q is absolute Baire if f is one-to-one. 

PROOF. The representation of p in part A of the proof of Theorem 1 
is a disjoint Souslin representation, and all Y's are borelian. By [ó] or 
[7] pis borelian. 

By [4] or [7] every borelian space is a one-to-one continuous image 
of a space Q that is a Baire set in some, hence in each [5], compacti-
fication of Q. Moreover, P may be taken to be an iVa in ]8Q. By 
Theorem 2 we get: 
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THEOREM 8. The following properties of a measurable space P are 
equivalent: 

1. P = Baire (Q), where Q is borelian. 
2. P = Baire (Q), where Q is a Baire set in some (and hence in each) 

compactification of Q. 
3. P = Baire (Q) where Q is the intersection of a sequence of cozero 

sets in PQ. 

The next theorem shows that every Baire measurable mapping of 
an analytic (borelian) space into a metrizable space is "analytic 
(borelian) continuous". 

THEOREM 9. Let A be an analytic (borelian) topological space, and 
let \fn} bea sequence of Baire measurable mappings of A into metrizable 
spaces. Then there exists an analytic (borelian) topology on A such that 
each f n is continuous and the two topologies are Baire equivalent. 

PROOF. We may replace {ƒ„} by a single mapping ƒ. The new 
topology is defined by projecting the topology of p in Theorem 1 
(Theorem 7, respectively) onto A. 

In conclusion it should be remarked that we have worked with 
"Baire" representations of measurable spaces by means of topological 
spaces. I t seems that nothing is known about "Borel" representations. 
Applications to measure theory will be published elsewhere. 
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