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1. Introduction. In an earlier paper [12] the author proved the 
following theorem : There exists a monotone open map of the universal 
curve onto any continuous curve such that each point-inverse set is 
also a universal curve. Since these mappings are open and have 
homeomorphic point-inverse sets, it is natural to ask whether or not 
these mappings are completely regular. Theorem 1 of this paper shows 
that they will be completely regular only if the range is a point. 
Theorem 1, Theorem 3, and the corollary to Theorem 3 all give con­
ditions on completely regular mappings so that they will not raise 
dimension. Theorem 4 actually classifies completely regular mappings 
of a certain type. 

The author wishes to express his gratitude to Professors G. Bredon 
and D. Erie for their assistance and helpful suggestions in the prepa­
ration of this paper. 

2. The main theorem. 

THEOREM 1. Iff is a completely regular mapping of an n-dimensional 
compactum X onto a compactum Y and Hn(f~1(y)) 5^0 for all yE: F, then 
Y is ^-dimensional. 

LEMMA 1. Let X be an n-dimensional compactum. Let J be a finite 
polyhedron contained in E2n+l of dimension less than n+1. If ƒ is a 
mapping of X into E2n+l and rj>Q, then there exists a homeomorphism 
hlX-ïE2"*1 such that d(f, h) <rj and h(X)nj=0. 

PROOF OF LEMMA 1. Approximate ƒ by a mapping g whose range is 
contained in an w-polyhedron which (by general positioning) misses 
/ . Since the set of homeomorphisms is dense in the function space 
(E 2 n + 1 ) x , we can find a homeomorphism h which approximates g and 
such that h{X)C\J=0. 

The homology theory in this paper will be singular homology with 
integer coefficients. If J is a singular w-cycle, then | J\ will denote its 
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carrier. The cohomology theory will be Cech cohomology with integer 
coefficients. 

LEMMA 2. Let M and N be compact subsets of E2n+1 and let J be an 
n-cycle which represents a class in Hn(E

2n+l — M). If there exists a 
homotopy equivalence h of M into N which moves no point of M more 
than |d(Af, | j \ ), then J represents a nonzero class in Hn(E

2n+l — M) 
if and only if J represents a nonzero class in Hn(E

2n+1 — N). 

PROOF. Let U be an open subset of E2 n + 1 such that | j \ C TJ 
<^E2"+l-{M\JN), E**+l-U is compact, and d(U, M)>±d(M, \ j \ ). 

If ii and ii denote inclusion mappings, then the above restrictions 
insure that the following diagram is homotopy commutative: 

M Î >E*n+i- U 

Thus, ii* = A* o i*. 
From the naturality of Alexander Duality, we get the following 

commutative diagram: 

Hn(E
2n+l - M) ^ Hn(M) 

Î *• Î ii* 
Hn(U) >Hn(E2n+1 - U) 

I h i IT 

Since i? = h* o i* and h* is an isomorphism, the result follows. 

LEMMA 3. Let A and B be disjoint closed subsets of an n-dimensional 
compactum X, If Hn{A)?£0, then there exists an imbedding h\X—>E2n+l 

and n-cycle J such that h(X)C\ \ J\ = 0 and J represents a nonzero class 
in Hn(E

2n+1-h(A)) and the zero class in Hn(E
2n+1 ~h{B)). 

PROOF. L e t / I be an imbedding of A into E2n+1 and let ƒ be a sim-
plicial w-cycle which represents a nonzero class in Hn(E

2n+1—fi(A)). 
By Tietze's extension theorem, we can find a map ƒ from X into 
E 2 n + 1 which extends/i and such that ƒ (B) is outside some ball N con-
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taining fi(A)\J\ j \ . By Lemma 1 there exists a homeomorphism h of 
X into £ 2 n + 1 such that 

d(f, h) < min {d(f(B), N), | J ( | J\ ,f(A))\ 

and & ( X ) P \ | / | = 0 . By Lemma 2, J represents a nonzero class in 
Hn(E*»+i-h(A)). 

Note that in the proof of Lemma 3 we did not try to extend the 
imbedding/i to h, but rather "moved" it slightly. This is neceisary 
since the examples in [2] can be used to show that there exists an 
imbedding of a Cantor set plus a circle into En, n*z5, which cannot be 
extended to a Cantor set plus a disk. 

PROOF OF THEOREM 1. Since Y is compact, it is sufficient to show 
that each component K of F is a point. 

Suppose K contains two distinct points yi and y2. By Lemma 3 we 
can find an imbedding h of X into E2n+1 and w-cycle / such that 
h(X)C\\ J\ = 0 and the class [J] is nonzero in Hn{E^^-h{f~l{yx))) 
and [J] = 0inHn(E*n+l-h(f-l(y2))). 

Let Yt^lyEKllJ^O in Hn{E^-h{f~l(y)))) and F2 

= {yEK:[j] = 0 in Hn(E*n+l-h(f-l(y))))- Note that yi<EYx and 
3>2 G F2. Using Lemma 2 together with the complete regularity of ƒ it 
is easy to show that both Y\ and F2 are open. Since K = Y\\J F2, we 
have a contradiction of the assumption that K is connected. Thus, K 
is a point. 

REMARK. Note in Theorem 1 that if F is connected, then F is a 
point. 

3. Mappings which do not raise dimension. The next theorem is a 
cohomology analogue of Theorem 1 of [4]. 

THEOREM 2. If f is a monotone mapping of an n-dimensional com-
pactum X onto a finite dimensional compactum Y and Hk(f"l(y)) = 0 / o r 
all k^ 1 and all yE: F, then 

dim Y -£ n S dim F + sup{dimf~l(y)}> 

PROOF. The second inequality follows from Theorem VI of [8]. 
To show the first inequality we will use the characterization of 

dimension given in Theorem VIII 2 of [lO]. Thus, it is sufficient to 
show that if C is a closed subset of F and m^n, then the homomor-
phism i*, induced by the inclusion i: C—>Yf is onto. Since dim X — n9 

we have the following commutative diagram: 

0 <r-Hm(f~l(C)) <~ Hm(X) 

Î ƒ* .* Î ƒ* 
Hm(C)<—— Hm(Y) 
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By the Vietoris Mapping Theorem we know t h a t / * is an isomorphism 
so that i* is onto. Thus, dim Y S n. 

THEOREM 3. Let f be a completely regular mapping of an n-dimen-
sional compactum X onto a finite dimensional compactum F. If for each 
yÇz Y f~l{y) has only a finite number of components and Hk(f~1(y)) = 0 
fork = l, • • • , n — 1, then dim F ^ d i m X . 

PROOF. I t is sufficient to show that each component K of Y has 
dimension ^ d i m X. 

If Hn(f~1(y)) 7*0 for some yÇzK, then, by Theorem 1, K is a point. 
If Hn(f~1(y))=0 for all yGK, then factor ƒ by the monotone light 

factorization theorem: 

f - i ( K ) — > K 

m 

Z 

Since I is a finite to one open mapping, we know that dim Z 
= dim K< oo [9]. Hence, by applying Theorem 2 to the map mf we 
know that dim K = dim Z S dim X. 

COROLLARY. If f is a completely regular mapping of a 1-dimensional 
compactum X onto a finite dimensional compactum Y such that each 
point-inverse has a finite number of components, then dim Y S l . 

REMARK. Note that the above corollary is not true if we allow the 
point-inverse sets to be cantor sets. For Theorem 2 of [12] states that 
there exists a light open mapping of the universal curve onto any 
nondegenerate continuous curve such that each point-inverse set is a 
Cantor set. Note that these mappings will be completely regular. 

EXAMPLE. If Y is any continuous curve, then there exists a 2-di-
mensional continuum X and a monotone completely regular mapping 
F of X onto F. 

Let a7 denote the standard 7-simplex. If A, J5Ccr7, then let A'B 
= {xE-O-tlxCzia, b)f aGA, bGB}. Let o\ and a\ denote two disjoint 
3-simplices which are faces of cr7. Let U\ and u2 be two copies of the 
universal curve in cr? and a\> respectively. Let/»: Ui—>Ybe completely 
regular mappings of the type in the above remark. Let X 
= {fî1(y)'f21(y)*yÇzY}' There is a natural monotone completely 
regular mapping FoiX onto F which extends each ƒ». I t can be shown 
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that dim F~l(y) = l and d i m X = 2. Note that this example follows 
the technique of [7]. 

THEOREM 4. Iff is a completely regular mapping of a 1-dimensional 
compactum X onto a finite dimensional continuum Y such that f~~l (y) is 
a continuous curve for all y£:Y, then either Y is a point or Y is homeo-
morphic to X under ƒ. 

PROOF. If f~l(y) contains a simple closed curve, then by Theorem 1 
we know that F is a point. 

Suppose f~l(y) contains no simple closed curve for all yÇzY. If 
f~l(y) and Y are both nondegenerate, then by Theorem 3 of [4] we 
know that dim X = dim F + 1 ^ 2 . This contradicts the assumption 
that X is 1-dimensional. 
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