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In this note we give a short proof of a theorem of Bochner and 
Montgomery [ l] using semigroup theory. In addition, we obtain 
more general results and give some applications (to diffeomorphism 
groups and nonlinear semigroups). A more detailed exposition will 
appear in [3]. 

1. Separate and joint continuity of group actions. The following 
generalizes a result of Ellis [ô]. 

THEOREM 1. Let M be a metric space, and let G be a Baire space with 
a group structure in which multiplication is separately continuous. Let 
irlGXM—^M be an action which is separately continuous. Then ir is 
jointly continuous. 

PROOF. For each x&M there is a dense gs AQG such that T is 
continuous at (go, x) for goÇzA. (See [4, p. 256, Problem 11 ] or 
[2, p. 255 Exercise 23].) For any (gf x)Ç:GXM, we have, writing 

i r (g , i* /) s=g ,* ,> 

g'x' = ggh-xgog-lg'x' = <Kgog~lg'x') 

where <j>:M-+M, <j>(y)=zggöly and is continuous. But gog~lgf—>go as 
g'-*g, so as g'—>g, x'—*x we get 

g'%' = <t>(gog-lg'x') -> <Kgox) = gx 

by joint continuity of w at (go, x). 
If M is not metric the conclusion of Theorem 1 is no longer valid 

(consider G the circle and M the continuous functions on G with the 
topology of pointwise convergence). 

As a corollary, it is not hard to deduce that a Baire separable 
metric group G for which multiplication is continuous is a topological 
group (compare [9] and [2, p. 258]). For example the Ck or H8 or 
Ck+a diffeomorphism group of a compact manifold satisfies these 
conditions; c.f. [5]. 
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THEOREM 2. Let G be a Baire group and M a (paracompact) mani
fold (finite or infinite dimensional). Let irlGXM—tM be separately 
(hence jointly) continuous. Suppose that for each g £ G , the map 
IT g : x*->gx is of class C1 on M. Then the tangent action TTT'.GX TM-^TM 
is continuous. 

The idea is as follows. By Theorem 1 it suffices to show separate 
continuity of Tir(g, vx) for vxÇz TXM. Continuity in vx is the hypothesis. 
But \[/(g) — Tirg(vx) is the pointwise limit (in a chart) of 

^n(g) = (g-x, n[irg(x + (l/n)vx) - irg(x)]) 

so by Baire's theorem, \p has points of continuity. We get continuity 
at all g by using the group property as in Theorem 1. 

There is an analogous theorem for Tkir if T0 is Ck. 
An example on R shows that in Theorem 2, mere differentiability 

of -KQ will not suffice. 

2. A uniqueness theorem for nonlinear one parameter groups. 
Theorem 2 can be used to prove the following: 

THEOREM 3. Let M be a manifold and DC.M a dense subset. Let X 
be a vector field on M defined at points of D. Suppose X has a C1 flow 
in the f oil owing sense: there is an action F:RXM—>M satisfying the 
conditions of Theorem 2, Ft\D--*D and 

d/dt Ft(m) |i_o = X(m) for m G D. 

Then integral curves of X are unique: f or any differentiate c(t) (not a 
priori C1) with c'(t) =X(c(t)) we have c(t) = 7^(c(0)). 

Many interesting nonlinear semigroups Ft are actually smooth 
for / fixed (but of course, as in the linear case, need not be smooth 
jointly), for example smooth perturbations of linear generators, and 
the flows defined by the Euler and Navier-Stokes equations (on 
suitable spaces; [5]). 

The idea of Theorem 3 is to consider H(t) = F-t(c(t)) and to show 
H is differentiable and H'(i) = 0. This is done by writing 

(l/h)[H(t + h) - H(t)] = (l/h)[F„tF-hc(t + h) - F-tF-hc(t)] 

+ (1/h) \ DF-.{t+h)(c(t) + sv)-vds, 
J o 

where v = c(t + h)—c(t), and using joint continuity of DFt(x) u (by 
Theorem 2). 

3. Generalization to semigroups. In generalizing to semigroups of 
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maps Fu t>0, we have the following result. 

THEOREM 4. Let M be a metric space and Ft, / > 0 , a semigroup of 
continuous mappings of M to M such that f or all x £ l f , ty-^Ft(x) is 
continuous. Then Ft(x) is jointly continuous. The same result is true 
if M is a (paracompact) finite dimensional manifold, Ft is for each t, 
continuous and proper and t*->Ft(x) is (Borel) measurable. 

Analogues of Theorems 2 and 3 remain valid for such semi-group 
actions. 

The first and last parts are proved much like the group case. The 
measurable case (which would also work for locally compact group 
actions) goes as follows: let E be the space of continuous functions 
on M which vanish at <*> and set Ut : E-+E, ƒ»-»ƒ o Ft. Then Ut is a 
linear semigroup. I t is not hard to see that Ut is strongly measurable 
and as E is separable, Ut is strongly continuous [8]. Using normality 
of M we can deduce the result for Ft. 

One cannot deduce joint continuity at 2 = 0. There is a counter
example for M = R2. 

4. Joint smoothness of actions. An action T such that wg is smooth 
will not in general be jointly smooth. (Any group generated by an 
unbounded linear operator is an example.) But for actions on finite 
dimensional manifolds this is valid. This is the basic result of Bochner 
and Montgomery [ l ] . However our proof yields more general results 
(as we shall see). 

THEOREM 5. Let G be a finite dimensional Lie group acting on a 
finite dimensional manifold M. Suppose ir is separately (hence jointly) 
continuous and irQ is of class Ck for each g £ G (here 1 ^ & ^ «>). Then 
7T : G X M—>M is jointly of class Ck. 

In particular a flow Ft on M which is, for each t, of class Ck is 
generated by a Ck~x vector field on M. 

In general the generator need not be Ck. For example on R the 
vector field X(x) = 1 if x^l, X(x)=x if x ^ l generates a flow Ft 

which is, for each fixed /, a C1 diffeomorphism, but X is not C1, only 
Lipschitz. 

PROOF OF THEOREM 5. Let X be the Ck functions on M with the Ck 

topology. Then X is a sequentially complete locally convex space. 
Define UglX—^X by Ug(f)(x) =f(g~1x). By hypothesis, UQ maps X 
to X. By joint continuity of 7r, TIT, • • • , 7 % (Theorem 2), { UQ} 
is locally equicontinuous. Thus (by arguments standard in semigroup 
theory; [8]) there is a dense set D00 in X such that if / £ J D ° ° , the map 
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g^Ugf from G to X is C00. By denseness of JD00, there exists/i , • • • , 
/n£J9°° which form a local chart at XoE:X (use the Jacobian). It 
follows easily that g*~>^~1x0 is C* for g near e and by the group prop
erty for all g. Thus we have proven TT is separately Ck. But by con
sidering the tangent actions we get that w is jointly Ck. 

We mention that Theorem 5 implies that a continuous homo-
morphism of Lie groups is necessarily C00, a well-known result. 
(If a'.G-^H is a homomorphism, apply Theorem S to the action 
a:GXH->H, ir(g, h)=a(g) • A.) 

5. Application to diffeomorphism groups. We work with the H8 

case. Similar results are true in the Ck and Holder cases. Let M be a 
compact manifold (possibly with boundary) and 2D8 the group of H8 

diffeomorphisms, s>n/2 + 2, n = dim M. I t is known (see [5]) that 
3D* is a Hubert manifold and a topological group. Moreover, 33* 
admits an exponential map. That is, an H* vector field Y on M has 
a flow consisting of H* diffeomorphisms and these form a C1 curve in 
£>*. Let 3D = 3D00 be the group of C00 diffeomorphisms. Here we prove: 

THEOREM 6. A continuous one parameter subgroup of 2D* is a C1 

curve in 3D*"1. A continuous one parameter subgroup of 3) is a C00 curve. 

Actually the subgroup need only be measurable (in the sense given 
below). 

Thus 3D is like a Lie group (we remarked on Theorem 6 for Lie 
groups above) but it is infinite dimensional, locally Fréchet. 

The proof of Theorem 6 is as follows: let X be the H* functions on 
M and define Ut:X-^X by Ut(J) =ƒ o Ft. Standard facts about com
position of H8 maps with H8 diffeomorphisms shows Ut maps X to X 
and is continuous (measurability of Ut of course suffices to guar
antee continuity). See [5], As in Theorem S we get a local H8 chart 
fu ' ' ' i fn such that t*-*fiO Ft is differentiate in H8\ (it is known 
(after Ebin) that the Jacobian test is valid to determine local H8 

diffeomorphisms). This implies that the generator Y is H8~l (again 
this cannot be improved to H8). The statement for 3D then follows 
from that for 33* by standard arguments in global analysis; cf. 
[5, §2]. 

6. A nonlinear generalization of a theorem of M. H. Stone. Half 
of Stone's theorem asserts that the generator of a continuous one 
parameter unitary group is selfadjoint [8, p. 253]. We give a theorem 
on nonlinear semigroups which includes this as a special case. 

The context of the results is in nonlinear Hamiltonian systems. 
We assume our flows are globally defined and the manifolds are flat 
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for simplicity. 
The proofs make use of the continuity and smoothness results 

above and further analysis (details will be given in [3]). 
Let E be a Banach space and Ft:E-*E a one parameter group of 

(nonlinear) mappings and assume for each fixed t, Ft is of class C2, 
and is continuous in t (cf. Theorem 2). Let AIDACE—^E be the 
generator of Ft; DA consists of those x £ £ such that d/dt Ft(x)\ t=a0 

= Ax exists. Let B be the generator of the tangent flow TFt. I t is 
easy to see that B{x, h) = (Ax, Bx • h) for a linear operator Bx with 
domain denoted Dx, (One should think of Bx as the derivative of A 
at x.) As a preliminary result, we have 

THEOREM 7. Under the above hypotheses, we have (DF' = derivative of 
F): 

(i) xE.DAimplies Ft(x)£DAand A(Ft(x)) =DFt(x) • A(x). 
(ii) Dx is dense in E f or each xÇEDA. 
(iii) The operators A and Bx are closed, i.e. the graphs TA and TBZ in 

EXE are closed. 

Now assume E has a weak symplectic form co, i.e. a skew symmetric, 
continuous bilinear form such that co(ft, k) = 0 for all k implies h = 0, 
and Ft is symplectic, i.e. 

œ(DFt(x)h, DFt(x)-k) = «(*,*)• 

We need, in addition, the technical assumption that there are 
local symplectic charts on E which linearize the domain DA (this is 
related to TA being a submanifold of EXE). 

THEOREM 8. Under these assumptions, for each X£DA, BX is a skew 
adjoint operator {with respect to co). 

Of course skew adjoint is in the same strong sense as self ad joint. 
This includes Stone's theorem by taking œ(h, k) to be the imaginary 

part of the inner product (h, k) on the given Hubert space. 
N O T E ADDED IN PROOF. We wish to point out the following improve

ment of Theorem 4. Let M be a separable metric space and let Ft, 
/ > 0 , be a semigroup of continuous mappings of M to M such that, 
for all xÇzM, the map tt-*Ftx is Borel measurable. Then Ft(x) is 
jointly continuous. This can be proved by adapting an idea which 
seems to go back to Banach. Fix xÇzM; then the Borel mapping 
t\->Ft(x) is continuous when restricted to the complement of some 
first-category set C in (0, <*>) [2]. Suppose that / 0 > 0 and tn-^t0. We 
claim that Ftn(x)—^Fto(x). We can assume that, for all n, / w >^o . We 
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can then find s with 0 < s < § / o such that tn~%to+sffzC for w = 0, 1, 
2 • • • .Therefore Ftn~t0/2+s(oc)-^FtQ/2+8(x). By applying the continuous 
map Ft0/2-8 to this limit, we deduce the asserted continuity of Ft(x) 
a t to. Thus we have separate continuity, and joint continuity now 
follows from Theorem 4. 
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