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Let X be a locally convex topological vector space, Y a real 
Banach space, ƒ a mapping (in general, nonlinear) of X into Y. In 
several recent papers ([5], [ó], [7]), Pohozaev has studied the 
concept of normal solvability or the Fredholm alternative for mappings 
ƒ of class C1. If Ax=f'x' is the continuous linear mapping of X into Y 
which is the derivative of ƒ a t the point x of X, A* the adjoint map
ping of F* into X*, his principal results assert that if the nullspace 
N(A*) is trivial for every x in Xy and if one of the two following 
hypotheses hold: 

(1) F is reflexive and f(X) is weakly closed in F ; 
(2) F is uniformly convex and ƒ(X) is closed in F ; 

then the image f(X) of ƒ must be all of F. 
I t is our purpose in the present paper to considerably sharpen and 

generalize these results by use of a different and more transparent 
argument. In particular, we establish a corresponding theorem for an 
arbitrary Banach space F and f{X) closed in F, allow exceptional 
points x in X a t which the hypothesis on N(A*) may not hold, and 
derive this theorem from a basic theorem on general rather than 
differentiable mappings. The techniques which we apply below may 
be extended to infinite-dimensional manifolds and may be localized 
to prove the openness of ƒ under stronger hypotheses (as we shall do 
in another more detailed paper). 

To state our basic theorem, we use the following definition: 
DEFINITION 1. Let X be a real vector space, ƒ a mapping of X into the 

real Banach space Yyxa point of X. Then the element v of the unit sphere 
5i( F) of Y is said to lie in the set Rx(f) of asymptotic directions f or f at 
x if there exists £ ^ 0 in X and a sequence {jj} of positive numbers with 
7,—->0 asj—> oo such that for eachj,f(x +7;£) ^ / ( x ) , while 

| | / (* + y&) ~ / ( * ) | h ( / ( * + yjQ - ƒ(*)) -* * 0 ' -> * ) . 

Our basic general result is the following: 

THEOREM 1. Let X be a real vector space, Y a real Banach space, ƒ a 

A MS subject classifications. Primary 4780, 4610; Secondary 4785. 
Key words and phrases. Fredholm alternative, nonlinear operators, normal 

solvability, set of asymptotic directions, differentiable mappings, cone with interior, 
closed range, Bishop-Phelps theorem. 

993 



994 F. E. BROWDER [September 

mapping of X into Y such that f(X) is closed in F. Suppose that there 
exists a finite subset N of X such that f or all x in X-—N, the set Rx(f) of 
asymptotic directions of ƒ at x is dense in the unit sphere of F. 

Thenf(X) = Y. 

We note that the hypothesis of Theorem 1 does not assume that ƒ 
is continuous in any topology, not to speak of being differentiable. 
On the other hand, the following lemma indicates how we may derive 
hypotheses on the asymptotic set of directions at a given point from 
hypotheses on the derivative if it exists: 

LEMMA 1. Let X be a locally convex topological vector space, Y a 
Banach space, and let f be a mapping of an open subset of X into Y which 
is differentiable in the Gateaux sense at the point x with its derivative Ax 

a continuous linear mapping of X into F. Suppose that the nullspace 
N(A*) — {0}, where A* is the adjoint map of Ax carrying F* into X*. 

Then Rx(f) is dense in the unit sphere of Y. 

PROOF OF LEMMA 1. If N(A*) = {0}, then the range R(AX) of Ax is 
dense in F, and in particular in the unit sphere of F. Let y be a point 
of the dense set R(Ax)r\Si(Y) in Si(Y). Uy=Ax(£) for £ in X, then 
€_1 [ƒ(#+€£) -"ƒ(#) ]~~>y as €—»0. I t follows obviously since \\y\\ = 1 that 

||/(* + «Ö - /(*)IH/(* + eg) - f(x)] -+y (e -> 0). 

Hence y lies in Rx(f). q.e.d. 

THEOREM 2. Let X be a real locally convex topological vector space, ƒ 
a mapping of X into the real Banach space Y. Let N be a finite subset of 
Xy and suppose that f is differentiable in the Gateaux sense on X — N and 
that if Ax is the derivative of f at the point x, Ax is a continuous linear 
mapping of X into Y and N(A*) = {0} for each x in X — N. Suppose 
further that f (X) is closed in Y. 

Thenf(X) = Y. 

Theorem 2 is an immediate consequence of Theorem 1 and Lemma 
1. We note that for X a Banach space, mappings ƒ which are con
tinuously Fréchet differentiable with the range of AX1 the derivative 
of ƒ, closed for each x in X (N = 0) and with N(A*) = {o} for all 
x in X, the result of Theorem 2 is a simple consequence of a generaliza
tion of the implicit function theorem given by Graves [4]. In par
ticular, if ƒ is a nonlinear Fredholm mapping in the sense of Smale 
[s], Ax will have closed range for each x. However, the need for a 
different argument in general is forced by the fact that we do not 
assume R(AX) closed in F, nor continuous differentiability, nor that 
N = 0. 
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1. We base the proof of Theorem 1 on the following result in the 
geometry of Banach spaces: 

THEOREM 3. Let Y be a Banach space, S a closed subset of Y with 
S=Y. Let So be a point in the boundary of S in F, and let €>0 be given. 
Then there exists a point s\ in the boundary of S in Y with ||so—si|| <€, 
an element vo of Si( F) , and f > 0 such that 

C = {y | y G F, 0 < \\y - *J| < f, || fl|y - s^(y - *) - v0}\\ < f} 

does not intersect S. 

In intuitive terms, Theorem 3 states that at some point Si of 5 near 
SQ, there exists a cone with interior with vertex at s± which intersects 
S only at Si in the neighborhood of si. 

PROOF OF THEOREM 1 FROM THEOREM 3. We suppose that S 
=f(X) 9e F. Let Si = bdry(5). Since RX(J) is dense in F for each point 
x in X — N, it follows that 5 is infinite. As a result, Si—f(N) is non
empty. Indeed, suppose Si=f(N) so that Si is finite, and let y0 be a 
point in S—f(N). For each ray R which emanates from y0, R contains 
points of 5 (namely y0 itself) and can contain points of F—S only if 
R intersects bdry(S) =5 i . If Si is finite, only a finite number of such 
rays can intersect Y—S. Hence, all the other rays are contained in 
S, S is dense in F, and since S is closed in F by hypothesis, it follows 
that S = F contrary to our assumption. 

We choose a point s0 in Si—f(N) and e > 0 with e<dist(s0 , /(iV)). 
By Theorem 3, we can find a point si in bdry(S) and a suitable cone 
with vertex at Si intersecting S only in si in some neighborhood of si. 
Since Si lies in S—f(N), there exists x in X — N such that ƒ (x) =si. In 
particular, if v0 and f are the data for the cone at si, we can find v in 
Rx(f) such that \\v— VQ\\ < f / 2 . Since v lies in Rx(f), there exists an ele
ment £ in X and a sequence €y such that €y—>0, ƒ(#+€,£) — f(x) 5^0, 
ƒ (*+€$-»ƒ(*) , and 

| | / (* + «iÖ - sitl[f(x + ejQ - Sl] -+ v. 

Set y y =ƒ(#+€,£) for each j . Then y y lies in 5, is distinct from si for each 
i» yj—>si etsj—>oo. Hence for j sufficiently large, | J y y—$i|| < ? , while 

II \\yj - si\\-Kyj - si) - .o|| ^ ||* - «o|| + r/2 < r, 

which contradicts the characteristic property of the cone given by 
Theorem 3. q.e.d. 

2. We now give the proof of Theorem 3, thereby completing the 
argument as well for Theorems 1 and 2. This proof is based upon a 
device applied by Bishop and Phelps [l ] to prove the density of sup-
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port points for a bounded closed convex subset C of F. We note that 
for the case in which 5 is convex, Theorem 3 is equivalent to the 
Bishop-Phelps result. The basic tool of the argument is contained in 
the following lemma: 

LEMMA 2. Let Y be a Banach space, S0 a closed bounded subset of F. 
Suppose that C0 is a closed cone with vertex at the origin in Y such thai 
for a given y* in 5i( F*) and a constant M> 0, 

(1) IHI ̂  M(y*, y) 

for all y in So- (We use the notation (w, y) for the pairing between an 
element w of F* and an element y of Y.) 

Then there exists an element y o of S0 such that Sor\(y0+Co) = {yo}. 

PROOF OF LEMMA 2. We introduce a parting ordering on So by 
letting y^yi whenever ^ i G j + C0. The point y o of S0 satisfies the 
conclusion of Lemma 2 if and only if it is maximal in this ordering. To 
prove the existence of a maximal element, it suffices by Zorn's Lemma 
to prove that every totally ordered subfamily {ya} of So has an upper 
bound in So- Consider any finite subfamily {yu y2, • • • , yn} of the 
subfamily. We may assume that yi^y2^ • • • ^ym i.e. yy+iG^y+Co 
for each j . By the inequality (1), we have ||yy+i— 3>/|| â M(y*t y3+i--yi). 

If k =supî/e*s0||3
;!|> it follows that 

Z b + i - yi ^ M(y*, yn - yi) è 2Mk. 
i=l 

Since this inequality holds for each finite subfamily, it follows that 
the family {ya} is countable and may be written as a sequence {y;} 
with yj^yj+i for each j . Then ]£Ai ||yy+i~yi|| û2Mk, and yj-*y in F, 
y^yj for all j . Since So is closed, y lies in So and is the desired upper 
bound for {ya}. q.e.d. 

PROOF OF THEOREM 3. Let s0 be a given point of bdry(»S), e>0 . 
Since s0 lies in bdry(S), there exists a point y0 of F—S such that 
||yo~So|| <e /4 . For a given y0i we then find a point s2 of 5 such that 
||*2— yo\\ Ss(4/3)dist(;yo, S). Thus if d = ||yo —s2||, it follows that 
d<e/3. 

Let B be the closed ball of radius d/4 about y0f and let 

C1== { y | y = (1 -\)s2 + \z,zeB,\e[0, l ] } , 

c. = {y| y = * ( * - * ) , * e £ , * £ < ) } . 
Then C\ is a closed, bounded, convex subset of F and C2 is a closed 
cone in F. Let So = Sr\Ci. S0 is a closed bounded subset of F. Let 
s£:So- Then 5 = (1 — X)$2+Xsi for some 21 in 5 , X in [0, 1 ], and we have 
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3<Z/4 ^ dist(y0, S) g ||y0 - *|| ^ (1 - X)||y0 - *| | + X|k - y0|| 

£ (1 - X)d + X d/4, 

so that X ^ l / 3 . For any point 5 in S0 and any element y of C2 with 
y =£(2 - s 2 ) , for 2 in 5 and 0 g£ ^ 2 / 3 , 

s + y = (1 — X)s2 + X*i + i(z — s2) 

- (1 - X - 0^2 + (X + Ö [X(X + Q-% + {(X + Ö"1*] G Ci 

since X + £ ^ l , [XCX+Q-^i+ÉCX+ö^s lGS for 0, zx in B. Moreover, 
for any element of the form s+y, y =£(2;— $2) with z in B, £ > 2 / 3 , we 
have 

\\s - (J + y)|| = ||y|| > (2/3)||s - * | | è (2/3)(3d/4) = J /2 . 

We choose an element y* of F* with ||y*|| = 1 such that (y*, yo —$2) 
> 0 and then a constant M>0 such that Af(y*, y0 —s2)>d. For 
this constant If, we form the closed cone Cz given by Cz 
= {y\ \\y\\ ûM(y*, y ) } . The two cones C2 and Cz have (yo—$2) in their 
interior. Hence, so does their intersection C0 == C2C\Cz. 

We apply Lemma 2 to the closed bounded subset S0 and the cone 
Co (which satisfies the inequality (1) since C0CC3). We obtain a point 
si of So such that S0(^(si + C0) = k } . Consider any point 5 of S 
f^(si+Co) with ||s — si|| Sd/2. Then 5 lies in S1 + C2 and by our pre
ceding remarks, s lies in &. Hence s lies in £o = 5P\Ci and therefore 
s = si. Since C0 is a cone with interior, we can replace it by a smaller 
cone of the form 

C-{y|||flW|-'y-..]||<f}u{0} 
with Ç<d/2. Moreover, 

I k - *o|| â ||yo ~ So|| + | k - yo|| S e/4 + d g c/4 + e/3 < 6. q.e.d. 

REMARKS. (1) The condition that N be finite can obviously be 
replaced by the weaker condition that f(N) should not be dense in 
bdry (ƒ(*)). 

(2) The argument of Pohozaev in [7] is based upon the result of 
Edelstein [3 ] that in a uniformly convex set, the set of y for a given 
closed subset 5 such that dist(y, S) is assumed forms a set dense in Y. 

(3) For a discussion of the general approach using local arguments 
like the theorem of Graves [4], see §2 of the writer's paper [2]. 

(4) The term "Fredholm alternative" is obviously not unambig
uous in its potential uses for nonlinear operators. In particular, the 
present considerations have no point of contact with recent results of 
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Neças concerning the solvability of homogeneous operators of the 
form T+\S with T strongly monotone and 5 completely continuous. 

BIBLIOGRAPHY 

1. E. Bishop and R. R. Phelps, The support Junctionals of a convex set, Proc. 
Sympos. Pure Math. , vol. 7, Amer. Math. Soc , Providence, R. I., 1963, pp. 27 -
35. M R 27 #4051. 

2. F . E. Browder, Nonlinear operators and nonlinear equations of evolution in 
Banach spaces, Proc. Sympos, Pure Math., vol. 18, Part 2, Amer. Math . Soc , Provi
dence, R. I. (to appear). 

3. M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J . 
London Math. Soc. 43 (1968), 375-377. M R 37 #1954. 

4. L. M. Graves, Some mapping theorems, Duke Math. J. 17 (1950), 111-114. 
M R 11, 729. 

5. S. I. Poho2aev, Normal solvability of nonlinear operators, Dokl. Akad. Nauk 
SSSR 184 (1969), 40-43 = Soviet Math. Dokl. 10 (1969), 35-38. M R 39 #2031. 

6. , Nonlinear operators which have a weakly closed range of values and 
quasilinear elliptic equations, Mat . Sb. 78 (120) (1969), 237-259. = Math .USSRSb. 7 
(1969), later M R 39 #631. 

7. , Normal solvability of nonlinear mappings in uniformly convex Banach 
spaces, Funkcional Anal, i PriloZen. 3 (1969), 80-84. (Russian) 

8. S. Smale, An infinite dimensional version of Sard1 s theorem, Amer. J. Math . 87 
(1965), 861-866. M R 32 #3067. 

UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637 


