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The purpose of this note is to study the Euclidean condition 
number of the matrix resulting from using the well-known Rayleigh-
Ritz-Galerkin method with finite dimensional subspaces of poly­
nomial spline functions to approximate the solution of a linear, self-
adjoint* two-point boundary value problem. Roughly speaking, we 
consider a model class of such problems of order In and determine 
upper bounds, of the form of a constant times the norm of the parti­
tion associated with the spline subspace to the — 2wth power, for the 
Euclidean condition number of the associated matrix.2 

The class of problems we are considering is defined by 

n 

(1) L[u] s X) (-l)'D*[pj(x)D'u(x)] « ƒ(*), - oo < x < oo, 
y-o 

subject to the boundary conditions 

(2) lim Dku(x) = lim Dku(x) = 0, 0 g Jfe g » - 1, 
X—* oo X-~* — » 

where D^d/dx. 
Let HQ'2 be the completion of the real-valued functions, h(x), in 

Co (— °°, °°), i.e., the completion of the infinitely differentiate, real-
valued functions with compact support, with respect to the Sobolev 
norm 

\\h\\nm(f"[D*h(x)]*d%\ . 

Moreover, we assume that pj(x)^L°°(— oo, oo) and are real-valued 
for O ^ j ^ n , / ( x ) G i 2 ( — °°, c 0) and is real-valued, and that 
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(3) KJi\k\\l S f °° Z p,<x)[D'h(x)fdx g K2\\h\\l, 

for all A£i3"2'2. We remark that with these hypotheses, the problem 
(1)~(2) has a unique generalized solution, cf. [2]. 

To approximate the solution u(x), we define a and b large enough 
in absolute value so that the solution, u(x), and its derivatives are 
close to zero outside of [a, b] and let {£<(*) J ^ C A ? " be N given 
linearly independent functions such that supp Bi(Z(at &), l^i^N. 
We seek an approximation to u(x) of the form v(x) = ZX-ifr^OxO, 
where we determine the coefficients {/3t-}jii by the Rayleigh-Ritz-
Galerkin method. For example, in the Galerkin method we demand 
that the residual £[Z£-i&-Bf-(tf)]--f(x) be orthogonal in L2(a, b) to 
the basis functions {#*(#) }*Li, i.e., 

(4) f Z M*) [ Z PiD&i(x)\ D*Bk(x)dx = f f(x)Bk(x)dx, 

for l^k^N, where we have obtained the left-hand side by integrat­
ing by parts. 

The system (4) may be rewritten in matrix form 

(5) ,4g = A, 

where 

and A = [/o/(x)jBfc(x)^x]. Clearly, the matrix 4 is symmetric and 
positive definite. In fact, using (3) and the Rayleigh-Ritz inequality, 
cf. [3], we have that 

8^5 = Z f M*)[ E/M>'5<(*)"U* 
y=o^a L i»i J 

n / • 00 r JV -12 

ƒ
00 p jsr -12 

E piD^Biix) dx 
—00 L »«-i J 

/

& r AT -12 
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unless 5 = 0 , since the Bi s are linearly independent. 
We now consider the special case of spline basis functions. Follow­

ing a construction due to de Boor, cf. the fundamental [ l ] , if d is a 
positive integer, a finite set of real numbers Ala — XoSxiS • • * SXN 
SxN+i = b is said to be a d+1-extended partition of the interval [a, b] 
if and only if Xi<xi+d for all 0^i?£N~~d+1, i.e. if/»- denotes the fre­
quency with which Xi occurs in À, then fiSd for all 0^i<N—d+l. 
Let l3s{0t*i£N\xi<Xi+i}, Mi(x)^(d+l)t(xif • • • , Xi+d+i\ x) be 
the (d+l) - t imes divided difference in y of the function t(x, y) 
==(;y—x)% based on the points #*, • • • , Xi+d+i, and 

#«4-d4-l — X% 

Bi(x) s —— Mi(%) for all 0 = i g N - d. 
d + 1 

I t follows that fJ;(tf) ^ 0 for all — oo < # < oo with equality if and only 
if x(£(xi, Xi+d+i) for all O^i^N—d, and ^2fj0

d Bi(x) g 1 for all 
— oo < x < oo. Let S0(d, A) be the linear span of {Bi}fjf*~fx^d. I t is 
easy to see that if s(x) £S 0 (d , A), then s(x) reduces to a polynomial of 
degree d on each of the subintervals [xit xi+i] for all i(El and has 
d—fi continuous derivatives in a neighborhood of Xi for all l^i^N. 
Moreover, supp s(x)C.(a, b) and if d—fi^n — 1 for all fo^i^N 
—d—fN-d then S0(d, A)C#o'2» We consider a reordering of the basis 
functions such t h a t / 0 = 1 and N—d—fN-d = M and hence So(d, A) 
is the span of {Bi}^. Moreover, it follows from Corollary 1 of 
Theorem 3.1 of [ l ] that there exist positive constants, Qd, depending 
only on d, such that 

(6) OM]-* 

where 

Ë 0«B«(«) 
L°°(a,&) 

Hffll.s max | ft | , for all g G * M . 

Finally, we define S s m a x a ( « i + i - X j ) and A s mincer (# ;+!—#;). We 
now prove the main result of this paper. 

THEOREM. If (3) holds, A is a d-extended partition of [a, b], d—fi 
^n — 1 for allfo ^i^N—d —ƒj\r_<*, awd ̂ 4 i's tóe matrix of the linear system 
given in (4), tóew 

(7) c o n d ^ H M N M ^ Â(A)-(A)--
2KiQdir

2n 2 

where 
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| | 4 2 ^ s u p | | ^ | | 2 / | | s | | 2 and | | 5 | | 2 = ( Z | ^ | 2 Y / 2 . 

PROOF. Since A is a symmetric matrix, cond(^4) «X^A, where X is 
the minimum eigenvalue of A and A is the maximum eigenvalue of A. 
Hence, it suffices to obtain upper bounds for X*x and A. From (3) 
and the Rayleigh-Ritz inequality and the boundary conditions we 
have 

n /»&["" M - | 2 rhV M "I2 

ff'^ff = E EiMWB<(*) \dx^Kl\ Y,piD^Biix) dx 
}=QJ a L f-1 J J a L *=l J 

( .j,. \ 2 n - 2 / » & r -M" "12 

( ^ \2n-2 2 II M I I 2 

7 ) 7 I ) &*<(*) 
b — a/ o — a|| »wi IIL*(a.ft) 

2 2n—2 2 2n—2 
2KiQdW i, .,2 2KiQdW ,, ,,2 

since g has at most (d)(b — a)/A components. Thus, 
^ ~ ^2 2n~l 

(8) X ê — A. 
V (d)(b - a)2» 

Conversely, using the Markov inequality cf. [4], we have 

/

br M -12 

Jü 2 r* 
g (d + 1)K2 £ ft [Z?»5<(*)]V* 

M pxi+d+1 2 

= (d+l)K2Y,Pi [D*Bi(x)]dx 

M 2 2 /•«i+d+l 
^ (i + l)Jf 1 Z 0<|| # *<(*)|| L-(—.«) W* 

^ ( i + D2is:8(2dynÂ|lgl|^ 

(A)2» 

Thus, we have 

(9) A g 4"(d + l)WnK2Z(&)-în. 

file:///2n-2
file:///2n-2
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Combining (8) and (9), we obtain the required result. Q.E.D. 

COROLLARY. If (3) holds, C is a collection of d-extended partitions, 
A, of [a, b], such that d—fi*zn — l for all fo^i^N—d—fN-d for all 
AG C, À (A)"-1 Sv < °° for all AG C, and A (A) is the matrix of the linear 
system given in (4) for S0(d, A), then there exists a positive constant, K, 
independent of A, such that 

(10) cond(,4(A)) g Z(A)~2w 

for all A G C. 

We remark that the exponent in (10) is independent of d and that in 
the special case of w = l , (10) shows that the matrices A for spline 
subspaces are conditioned no worse than the analogous matrices 
obtained from the standard three point central difference approxima­
tion to (1). 
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