THE SINGULAR SETS OF AREA MINIMIZING RECTIFIABLE CURRENTS WITH CODIMENSION ONE AND OF AREA MINIMIZING FLAT CHAINS MODULO TWO WITH ARBITRARY CODIMENSION ${ }^{1}$

BY HERBERT FEDERER

Communicated by C. B. Morrey, Jr, February 11, 1970

1. When describing the interior structure of an area minimizing m dimensional locally rectifiable current T in R^{m+1}, one calls a point $x \in \operatorname{spt} T \sim$ spt ∂T regular or singular according to whether or not x has a neighborhood V such that $V \cap$ spt T is a smooth m dimensional submanifold of R^{m+1}. As a result of the efforts of many geometers it is known that there exist no singular points in case $m \leqq 6$; a detailed exposition of this theory may be found in [3, Chapter 5]. Recently it was proved in [2] that

$$
Z=\partial\left(E^{8} L R^{8} \cap\left\{x: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}<x_{8}^{2}+x_{8}^{2}+x_{7}^{2}+x_{8}^{2}\right\}\right)
$$

is a 7 dimensional area minimizing current in R^{8} with the singular point 0 . This implies that, for $m>7, E^{m-7} \times Z$ is an m dimensional area minimizing current in $R^{m-7} \times R^{8} \simeq R^{m+1}$ with the $m-7$ dimensional singular set $R^{m-7} \times\{0\}$. Here we will show (Theorem 1) that the Hausdorff dimension of the singular set of an m dimensional area minimizing rectifiable current in R^{m+1} never exceeds $m-7$.

Our method also yields the result (Theorem 2) that the Hausdorff dimension of the singular set of an m dimensional area minimizing flat chain modulo 2 in \boldsymbol{R}^{m+p} never exceeds $m-2$, for arbitrary codimension p.
2. We use the terminology of [3]. Given any positive integer m we choose Υ according to $[3,5.4 .7]$ with $n=m+1$ and let

$$
\omega(T)=\left\{x: \Theta^{m}(\|T\|, x) \geqq \Upsilon\right\} \quad \text { for } T \in \mathscr{O}_{m}^{\mathrm{loo}}\left(R^{m+1}\right)
$$

Whenever $0 \leqq k \in R$ and $A \subset R^{m+1}$ we define $\phi_{\infty}^{k}(A)$ as the infimum of the set of numbers $\sum_{B \in G} \boldsymbol{a}(k) 2^{-k}(\operatorname{diam} B)^{k}$ corresponding to all countable open coverings G of A. We see from [3,2.10.2] that

AMS Subject Classifications. Primary 2880, 2849; Secondary 2656, 3524, 4640, 5304.

Key Words and Phrases. Area minimizing current, rectifiable current, flat chain modulo two, singular point, regular point, Hausdorff dimension, density, oriented tangent cone, Plateau problem.
${ }^{1}$ This work was supported in part by a research grant from the National Science Foundation.

$$
\phi_{\infty}^{k}(A)=0 \quad \text { if and only if } \mathscr{H}^{k}(A)=0
$$

and from $[3,2.10 .19(2)]$ that

$$
\Theta^{* k}\left(\phi_{\infty}^{k} L A, x\right) \geqq 2^{-k} \text { for } \mathcal{F}^{k} \quad \text { almost all } x \text { in } A
$$

Lemma 1. If $Q_{i} \in \mathscr{R}_{m}^{\text {loc }}\left(R^{m+1}\right)$ and Q_{i} is absolutely area minimizing with respect to R^{m+1} for each positive integer i,

$$
Q_{i} \rightarrow Q \quad \text { in } \mathfrak{F}_{m}^{100}\left(R^{m+1}\right) \quad \text { as } i \rightarrow \infty
$$

and K is a compact subset of $R^{m+1} \sim \operatorname{Clos} \cup_{i=1}^{\infty} \operatorname{spt} \partial Q_{i}$, then

$$
\phi_{\infty}^{k}[\omega(Q) \cap K] \geqq \limsup _{i \rightarrow \infty} \phi_{\infty}^{k}\left[\omega\left(Q_{i}\right) \cap K\right] .
$$

Proof. We observe that if V is any open set containing $\omega(Q) \cap K$, then V contains $\omega\left(Q_{i}\right) \cap K$ for all sufficiently large integers i. Otherwise we could choose a subsequence of points $x_{i} \in \omega\left(Q_{i}\right) \cap K \sim V$ converging to point $x \in K \sim V$. Since

$$
d=\operatorname{dist}\left(K, \bigcup_{i=1}^{\infty} \operatorname{spt} \partial Q_{i}\right)>0
$$

we would find whenever $d>r>s>0$ that $s^{-m \|}\left\|Q_{i}\right\| U\left(x_{i}, s\right) \geqq \mathbf{a}(m) \Upsilon$ according to $[3,5.4 .3(3)]$, with $B\left(x_{i}, s\right) \subset U(x, r)$ for large i, hence

$$
\|Q\| U(x, r) \geqq \underset{i \rightarrow \infty}{\lim \sup }\left\|Q_{i}\right\| U\left(x_{i}, s\right) \geqq s^{m} \alpha(m) \Upsilon
$$

by [3, 5.4.2]. Thus $\|Q\| U(x, r) \geqq r^{m} a(m) \Upsilon$ for $0<r<\delta$, and we could infer that $x \in \omega(Q) \cap(K \sim V)=\varnothing$.

Lemma 2. If $T \in \mathscr{R}_{m}^{\mathrm{loc}}\left(R^{m+1}\right)$, T is absolutely area minimizing with respect to $R^{m+1}, a \in \operatorname{spt} T \sim \operatorname{spt} \partial T$ and $\Theta^{* k}\left[\phi_{\infty}^{k} L \omega(T), a\right]>0$, then there exists an oriented tangent cone Q of T at a such that $\mathcal{H}^{k}[\omega(Q)]>0$.

Proof. Assuming $\Theta^{* k}\left[\phi_{\infty}^{\boldsymbol{k}} L \omega(T), a\right]>2^{k} c>0$ and recalling the proof of $[3,5.4 .3]$, in particular the argument on pages 624 and 625 , we choose ρ_{i} and β_{i} for each positive integer i so that

$$
\begin{gathered}
0<2 \rho_{i}<i^{-1} \sigma_{i}, \quad \phi_{\infty}^{k}\left[\omega(T) \cap B\left(a, \rho_{i}\right)\right]>\alpha(k) \rho_{i}^{k} 2^{k} c \\
\beta_{i}^{-1} \in G_{i}, \quad \rho_{i} \leqq\left(1-i 2^{-i}\right) 2 \rho_{i}<{\overline{\beta_{i}}}^{-1}<2 \rho_{i}
\end{gathered}
$$

Then $\phi_{\infty}^{k}\left[\omega(T) \cap B\left(a, \beta_{i}^{-1}\right)\right]>a(k) \beta_{i}^{-k} C$ and the corresponding currents $Q_{i}=\left(\mathbf{u}_{\beta_{i}} \circ \tau_{-a}\right)_{\sharp} T$ satisfy the condition $\phi_{\infty}^{\boldsymbol{k}}\left[\omega\left(Q_{i}\right) \cap B(0,1)\right]>\boldsymbol{a}(k) c$. A subsequence of $Q_{1}, Q_{2}, Q_{3}, \cdots$ converges in $\mathfrak{F}_{m}^{\text {loc }}\left(R^{m+1}\right)$ to an ori-
ented tangent cone Q of T at a, for which $\phi_{\infty}^{k}[\omega(Q) \cap B(0,1)] \geqq a(k) c$ according to Lemma 1.

Theorem 1. If $T \in \mathcal{R}_{m}^{\mathrm{loc}}\left(\boldsymbol{R}^{m+1}\right), m \geqq 7$ and T is absolutely area minimizing with respect to R^{m+1}, then there exists an open set V such that $V \cap$ spt T is an m dimensional submanifold of class ∞ of R^{m+1} and

$$
\mathscr{C}^{k}\left[R^{m+1} \sim(V \cup \operatorname{spt} \partial T)\right]=0 \quad \text { whenever } m-7<k \in R
$$

Proof. We use induction with respect to m. First we will prove the following statement:

If M is an \AA^{m+1} measurable set, U is an open subset of R^{m+1},

$$
S=\left[\partial\left(E^{m+1} L M\right)\right] L U \in \Omega_{m}\left(R^{m+1}\right)
$$

and S is absolutely area minimizing with respect to R^{m+1}, then there exist an open set W such that $W \cap$ spt S is an m dimensional submanifold of class ∞ of R^{m+1} and

$$
\mathfrak{H}^{k}(U \sim W)=0 \quad \text { whenever } m-7<k \in R
$$

In view of $[3,5.4 .7]$ it suffices to show that

$$
\mathscr{H}^{k}[U \cap \omega(S)]=0 \quad \text { whenever } m-7<k \in R
$$

Assuming the contrary we choose $k>m-7$ and $a \in U \cap \omega(S)$ so that $\Theta^{* k}\left[\phi_{\infty}^{k} L \omega(S), a\right]>0$, apply Lemma 2 to obtain an oriented tangent cone C of S at a with $\mathscr{C}^{k}[\omega(C)]>0$, and infer from [3, 5.4.3(5), (8)] that C is absolutely area minimizing with respect to R^{m+1} and C $=\partial\left(E^{m+1} L N\right)$ for some \mathcal{L}^{m+1} measurable set N. Since $\mathfrak{J} \mathcal{C}^{k}\{0\}=0$ we can choose $b \in \omega(C) \sim\{0\}$ so that $\Theta^{* k}\left[\phi_{\infty}^{k} L \omega(C), b\right]>0$, and repeat the procedure to construct an oriented tangent cone D of C at b such that $\mathscr{C}^{k}[\omega(D)]>0, D$ is absolutely area minimizing with respect to R^{m+1} and $D=\partial\left(E^{m+1} L P\right)$ for some \mathscr{L}^{m+1} measurable set P. We infer from [$3,4.3 .16$] that D is a cylinder with direction $b /|b|$, from [3, 4.3.15] that there exist an isometry H mapping $R \times R^{m}$ onto R^{m+1} and a current $Q \in \mathscr{R}_{m-1}^{\mathrm{loc}}\left(R^{m}\right)$ with $D=H_{f}\left(E^{1} \times Q\right)$, and from [3,5.4.8] that Q is absolutely $m-1$ area minimizing with respect to R^{m}. We note that $\partial Q=0$ because $\partial D=0$. In case $m \geqq 8$ we inductively obtain an open subset Y of R^{m} such that $Y \cap$ spt Q is an $m-1$ dimensional submanifold of class ∞ of R^{m} and $\mathscr{F}^{k-1}\left(R^{m} \sim Y\right)=0$. In case $m=7$ we know from [3,5.4.15] that spt Q is a 6 dimensional submanifold of class ∞ of R^{7}, and we take $Y=R^{7}$. In both cases $H(R \times Y) \cap$ spt D is an m dimensional submanifold of class ∞ of R^{m+1} and

$$
\mathscr{H}^{k}\left[R^{m+1} \sim H(R \times Y)\right]=\mathscr{H}^{k}\left[R \times\left(R^{m} \sim Y\right)\right]=0
$$

by $[3,2.10 .45]$. Since $D=\partial\left(E^{m+1} L P\right)$ we see that

$$
\Theta^{m}(\|D\|, x)=1 \quad \text { for } x \in H(R \times Y) \cap \operatorname{spt} D
$$

hence $\omega(D) \subset \operatorname{spt} D \sim H(R \times Y)$ and $\mathscr{C}^{k}[\omega(D)]=0$, which is inconsistent with our previous assertion that $\mathcal{H}^{k}[\omega(D)]>0$.

To deduce the conclusion of the theorem from the statement verified above we suppose $a \in R^{m+1} \sim$ spt ∂T and proceed as in $[3,5.3 .18$] to find a positive number ρ and a representation

$$
T L U(a, \rho)=\sum_{i \in Z} S_{i} \quad \text { with } \quad\|T\| L U(a, \rho)=\sum_{i \in Z}\left\|S_{i}\right\|
$$

where $S_{i}=\left[\partial\left(E^{m+1} _M_{i}\right)\right] L U(a, \rho)$ for certain \mathscr{L}^{m+1} measurable sets M_{i} such that $M_{i} \subset M_{i-1} ;$ moreover $\left\{i: b \in \operatorname{spt} S_{i}\right\}$ is finite whenever $b \in U(a, \rho)$. For each integer i we choose an open set W_{i} such that $W_{i} \cap$ spt S_{i} is an m dimensional submanifold of class ∞ of R^{m+1} and

$$
\mathfrak{H}^{k}\left[U(a, \rho) \sim W_{i}\right]=0 \quad \text { whenever } \quad m-7<k \in R
$$

We conclude that $B=U(a, \rho) \sim \bigcup_{i \in \boldsymbol{Z}}\left(\operatorname{spt} S_{i} \sim W_{i}\right)$ is open,

$$
\begin{gathered}
U(a, \rho) \sim B \subset \bigcup_{i \in Z}\left[U(a, \rho) \sim W_{i}\right] \\
\mathcal{H}^{k}[U(a, \rho) \sim B]=0 \quad \text { whenever } m-7<k \in R \\
B \cap \operatorname{spt} T=\bigcup_{i \in Z} B \cap \operatorname{spt} S_{i}=\bigcup_{i \in Z} B \cap W_{i} \cap \operatorname{spt} S_{i}
\end{gathered}
$$

and $B \cap$ spt T is an m dimensional submanifold of class ∞ of R^{m+1} because for each $b \in B \cap \operatorname{spt} T$ one can reason as in [3, 5.4.15, p. 646] with a replaced by b to see that $\operatorname{Tan}(\operatorname{spt} T, b)$ is an m dimensional vector space, hence infer from $[3,5.3 .18]$ that b is a regular point for T.

It is not yet known whether the conclusion of Theorem 1 could be sharpened so as to require that $\mathcal{K}^{m-7}(K \sim V)<\infty$ for every compact subset K of spt $T \sim$ spt ∂T; in case $m=7$ this holds according to [3, 5.4.16].
3. Next we discuss area minimizing m dimensional chains with arbitrary codimension p in R^{m+p}. When $p>1$ the singular set can have dimension $m-2$, as illustrated in [3, 5.4.19] by the example of holomorphic chains. It follows from [3, 5.3.16] that the singular set of an area minimizing m dimensional rectifiable current T is nowhere dense in spt T, but the largest possible value of the dimension of the singular set is not yet known in case $p>1$ and $m>1$.

The situation becomes much simpler when \boldsymbol{Z} is replaced as coeffi-
cient group by the cyclic group \boldsymbol{Z}_{2} of order 2 . Reducing modulo 2 in the context of geometric measure theory as explained in [3, 4.2.26], one can modify the proof of Theorem 1 to obtain the following proposition:

THEOREM 2. If $T \in \mathcal{R}_{m}\left(R^{m+p}\right)$ and T is homologically area minimizing modulo 2 with respect to R^{m+p}, which means that $M(T+\partial S+2 R)$ $\geqq M(T)$ whenever $S \in \mathcal{R}_{m+1}\left(R^{m+p}\right)$ and $R \in \mathcal{R}_{m}\left(R^{m+p}\right)$, then there exists an open set V such that $V \cap$ spt T is an m dimensional submanifold of class ∞ of \boldsymbol{R}^{m+p} and
$\mathscr{H}^{k}\left[R^{m+p} \sim\left(V \cup \operatorname{spt}^{2} \partial T\right)\right]=0 \quad$ whenever $\sup \{m-2,0\}<k \in \boldsymbol{R}$.
In fact the extension of our two lemmas from R^{m+1} to R^{m+p} is trivial, the present current T is representative modulo 2 , hence $\omega(T) \sim \operatorname{spt}^{2} \partial T$ equals the singular subset of spt $T \sim \operatorname{spt}^{2} \partial T$, and the induction now starts with the case $m=1$ where the singular set is known to be empty.

For $m=2$ it was found in [1, Theorem 3(1)] that the singular set is isolated and spt $T \sim \operatorname{spt}^{2} \partial T$ is the image of an immersion of a 2 dimension manifold in R^{2+p}. However, for $m>2$ it is not yet known whether one could sharpen the conclusion of Theorem 2 so as to require that $\mathfrak{H}^{\boldsymbol{C}-2}(K \sim V)<\infty$ for every compact subset K of spt $T \sim \operatorname{spt}^{2} \partial T$.

Recalling [3,5.4.4] one sees that Theorem 2 remains valid with R^{m+p} replaced by any $m+p$ dimensional Riemmanian manifold of class ∞.

For the study of interior regularity of solutions of the problem of least area, use of m dimensional flat chains modulo 2 is substantially equivalent to use of sets with finite m dimensional Hausdorff measure as employed in Reifenberg's approach presented in [4, Chapter 10], provided $G=Z_{2}$ and L is cyclic (see [4, p. 411]). Then our method shows that the Hausdorff dimension of the singular set of Reifenberg's solution of the m dimensional Plateau problem does not exceed $m-2$.

References

1. F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277-292. MR 34 \#702.
2. E. Bombieri, E. DeGiorgi and E. Giusti, Minimal cones and the Bernstein theorem, Invent. Math. 7 (1969), 243-269.
3. H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, Berlin and New York, 1969.
4. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Die Grundlehren der math. Wissenschaften, Band 130, Springer-Verlag, Berlin and New York, 1966. MR 34 \#2380.
