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We want to reconsider a problem that goes back to Hilbert [3].
Let R= Y R be a commutative algebra which is graded by the non-
negative integers and finitely generated over R°=F, which for
simplicity is a field. Let M= Y M? be a finitely generated graded R-
module, with p again restricted to the nonnegative integers. Each
component M? is a finite-dimensional vector space over F. If R is
generated over F by elements homogeneous of degree one then
Hilbert proved that there is a polynomial

Hu(p) = e(M)p/(n — )1+ - - -

such that Hy(p) =dim M? for p large. With the understanding that
the zero polynomial is of degree —1, we may call # the dimension of
M. The coefficient e(M) is a nonnegative integer, the multiplicity of
M.

Unfortunately, if R is not generated by elements of degree one, it
is not usually true that dim M7 is eventually given by a polynomial in
p. (For example, let M =R=F[x] where x is an indeterminant of
degree two.) The more general case, where the generators of R are of
degree greater than one, arises naturally. We need a substitute for the
Hilbert polynomial and it turns out that the Poincaré series

P(M) = Y (dim M?)

of the module is a good substitute. In the classical situation the rela-
tion between Hy and P(M) is such that Hy is of degree at most n—1
if and only if (1—¢)»P(M) is a polynomial in ¢. Moreover, if Hy is of
degree exactly #—1 then e(M) is the value of (1—¢)*P(M) for t=1.
We intend to show how these facts generalize. The details of the
proofs will be given elsewhere.

In [4] Serre gave a homological treatment of dimension and multi-
plicity for local rings. Following Serre, we wish to define the multi-
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plicity of a graded module M as an Euler characteristic of the complex

Tor (F, M) = Y. Tor; (F, M).

Let C(R) be the category of all finitely generated graded modules
over R, and all homomorphisms which are homogeneous of degree
zero. Each Torf(F, M) is a finite-dimensional graded vector space, a
module of the category C(F). As Fraser [2] has observed, it is natural
to consider the Grothendieck groups K(R) and K(F) of the two cate-

gories, and attempt to define a multiplicity homomorphism xz: K(R)
—K(F). We set

xe(M) = 3 (—=1)'[Tor; (7, M)]

where [Torf(F, M)] is the image in K(F). This makes sense if
Tor®(F, M) is a finite complex. Surprisingly, the formula makes
sense in the “completion” of K(F) whether or not TorE(F, M) is
finite. Since a graded vector space V is determined by the dimensions
of its components, associating to V its Poincaré polynomial P(V)
identifies K (F) with the polynomial ring Z[¢] over the integers. Using
Eilenberg's technique [1] of minimal resolutions it is easy to prove a
lemma which insures that the above alternating sum is a well-defined
formal power series in £.

LEMMA. The pth component of TorE(F, M) is zero if p <i.

From the long exact sequence for Tor we have a homomorphism
xz:K(R)—Z|[t]] into the formal power series ring.

If every module in C(R) has a finite resolution by free modules in
C(R), i.e., if C(R) is of finite global dimension, then xz has values in
the polynomial ring Z[¢]. In this case it is also true that K(R) is a
ring, with the product of two of the generators given by

M][V] = 3 (—1) [Tori(at, W)).

This formula always makes sense in case one of the modules is free.
The free modules of C(R) are all of the form RQrV for V in C(F).
Thus in general K(R) is a module over K(F) = Z[¢].

THEOREM 1. For any R, xz:K(R)—Z[[t]] is a homomorphism of
Z[t]-modules. If C(R) has finite global dimension then xz: K(R)—Z[t] is
a ring isomorphism.

Associate to a graded finite-dimensional vector space its total
dimension. This yields a ring homomorphism dim: Z[t]—Z which is
the natural augmentation, the function which assigns to a polynomial
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its value for ¢ =1. If C(R) is of finite global dimension then composing
with xr gives a ring homomorphism eg: K(R)—Z and we have Serre’s
definition of the multiplicity in our situation:

ex(M) = Y (—1)" dim Tor; (F, M).

The category C(R) is of finite global dimension if (and probably
only if) R is a polynomial algebra F[xi, - - -, %,] generated by in-
determinants which are homogeneous of positive degrees. In this
case the Koszul complex can be used to compute multiplicities. Let
Hi(x, M) be the ith homology module of the Koszul complex of
x= (%1, +*+, %) and M.

THEOREM 2. Let R=F[xy, - - -, x,] be a polynomial algebra gen-
erated by indeterminants of positive degrees dy, + + « , dy. Then

xe(M) = 3 (—1){H(x, M)].
In particular, xr(F) =] (1 —t).

In the classical situation the indeterminants are all of degree one,
so xr(F) = (1 —¢)». This suggests the following theorem, which relates
the multiplicity of a module to its Poincaré series.

THEOREM 3. For any R and any M in C(R), xzg(M) =xr(F)P(M).

CoROLLARY 1. If C(R) s of finite global dimension then xg(F)P (M)
is a polynomial in t and egr(M) is the value of this polynomial for t=1.

We can always reduce to the case of finite global dimension by
regarding R as a quotient of a polynomial algebra S. An R-module
M becomes an S-module. The Poincaré series is unaffected, and
xs(M) and xs(F) are polynomials.

COROLLARY 2. xgr(M)=P(M)/P(R), and P(M) and xr(M) are

rational functions.

The relation xz(M)=P(M)/P(R) follows from the fact that
xe(F)P(R) =xzr(R)=1.
COROLLARY 3. xg(M) =0 if and only if M = (0).

Call M of dimension at most n if there are positive integers
dy, - -+, dy such that P(M) ] (1 —t%) is a polynomial in ¢.

THEOREM 4. The R-module M is of dimension at most n if and only
if there exist homogeneous elements y1, + + -, ¥n tn R such that M is
finitely generated over the subalgebra Flyi, - + «, v,].
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If P(M)]] (1 —%) is a polynomial it is not true that we can always
choose ¥y, « - +, ¥y, of degrees dy, + - -, d,. For example, let M =R
= F[x, y] where «x is an indeterminant of degree two and y is a non-
zero element of degree one with y2=0. The Poincaré series is

PM)=Q1+9/A—-8)=1/01—-1

but R contains no element ¥, of degree one with M finitely generated
over Fly].

COROLLARY. If R=Flyy, + -+, ¥a] then every M in C(R) is of
dimension at most n.
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