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We want to reconsider a problem that goes back to Hilbert [3]. 
Let R = YlRp be a commutative algebra which is graded by the non-
negative integers and finitely generated over R°~Ft which for 
simplicity is a field. Let M = ^,MP be a finitely generated graded R-
module, with p again restricted to the nonnegative integers. Each 
component Mp is a finite-dimensional vector space over F. If R is 
generated over F by elements homogeneous of degree one then 
Hilbert proved that there is a polynomial 

HM(p) = e(M)p*-i/(n - 1)1 + . . . 

such that HM(P) =dim Mp for p large. With the understanding that 
the zero polynomial is of degree —1, we may call n the dimension of 
M. The coefficient e(M) is a nonnegative integer, the multiplicity of 
M. 

Unfortunately, if R is not generated by elements of degree one, it 
is not usually true that dim Mp is eventually given by a polynomial in 
p. (For example, let M=R — F[x\ where x is an indeterminant of 
degree two.) The more general case, where the generators of R are of 
degree greater than one, arises naturally. We need a substitute for the 
Hilbert polynomial and it turns out that the Poincaré series 

P(M) = £ ) (dim Mp)tp 

of the module is a good substitute. In the classical situation the rela­
tion between HM and P(M) is such that H M is of degree at most n — 1 
if and only if (1 — t)nP(M) is a polynomial in t. Moreover, if HM is of 
degree exactly n — 1 then e(M) is the value of (1— t)nP(M) for / = 1. 
We intend to show how these facts generalize. The details of the 
proofs will be given elsewhere. 

In [4] Serre gave a homological treatment of dimension and multi­
plicity for local rings. Following Serre, we wish to define the multi-
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plicity of a graded module M as an Euler characteristic of the complex 

T o r V , M) = E Tor?(F, M). 

Let C(i?) be the category of all finitely generated graded modules 
over R, and all homomorphisms which are homogeneous of degree 
zero. Each Torf (F, M) is a finite-dimensional graded vector space, a 
module of the category C(F). As Fraser [2] has observed, it is natural 
to consider the Grothendieck groups K(R) and K(F) of the two cate­
gories, and at tempt to define a multiplicity homomorphism XR*K(R) 
->K(F). We set 

» ( 1 0 - E(-l) '[Tor?(^^)J 
where [Torf(F, M)) is the image in K(F). This makes sense if 
TorB(F, M) is a finite complex. Surprisingly, the formula makes 
sense in the "completion" of K(F) whether or not TorR(Ff M) is 
finite. Since a graded vector space V is determined by the dimensions 
of its components, associating to V its Poincaré polynomial P(V) 
identifies K(F) with the polynomial ring Z[t] over the integers. Using 
Eilenberg's technique [ l] of minimal resolutions it is easy to prove a 
lemma which insures that the above alternating sum is a well-defined 
formal power series in /. 

LEMMA. The pth component of Torf (F, M) is zero if p<i. 

From the long exact sequence for Tor we have a homomorphism 
Xfl:i£(l?)--*Z[[j]] into the formal power series ring. 

If every module in C(R) has a finite resolution by free modules in 
C(R), i.e., if C(R) is of finite global dimension, then XR has values in 
the polynomial ring Z[t]. In this case it is also true that K(R) is a 
ring, with the product of two of the generators given by 

[J f ] [ i \ r ] -£( - i )W?(t f >•#)]• 
This formula always makes sense in case one of the modules is free. 
The free modules of C(R) are all of the form R®FV for F in C(F). 
Thus in general K(R) is a module over K(F)=Z[t], 

THEOREM 1. For any R, XR:K(R)--*Z[[t]] is a homomorphism of 
Z[t]-modules. If C(R) has finite global dimension then XR • K(R)—*Z[t] is 
a ring isomorphism. 

Associate to a graded finite-dimensional vector space its total 
dimension. This yields a ring homomorphism dim:Z[^]—>Z which is 
the natural augmentation, the function which assigns to a polynomial 
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its value for t = 1. If C(R) is of finite global dimension then composing 
with XR gives a ring homomorphism e&\K(R)—>Z and we have Serre's 
definition of the multiplicity in our situation: 

eR(M) = E (-1)*' dim Tor?(F, M). 

The category C(R) is of finite global dimension if (and probably 
only if) R is a polynomial algebra F[xu • • • , xn] generated by in-
determinants which are homogeneous of positive degrees. In this 
case the Koszul complex can be used to compute multiplicities. Let 
Hi(x, M) be the i th homology module of the Koszul complex of 
x = (#i, * • • , xn) and M. 

THEOREM 2. Let R = F[xu • • • , xn] be a polynomial algebra gen­
erated by indeterminants of positive degrees du • • • , dn. Then 

XR(M) = Z ( - l ) * [ # * ( x , M ) ] . 

In particular, XR(F) = I I C 1 "-**)• 

In the classical situation the indeterminants are all of degree one, 
so XR(F) = (1 — On» This suggests the following theorem, which relates 
the multiplicity of a module to its Poincaré series. 

THEOREM 3. For any R and any Min C(R), XR(M) =XR(F)P(M). 

COROLLARY 1. If C(R) is of finite global dimension then XR(F)P(M) 

is a polynomial in t and en(M) is the value of this polynomial f or / = 1. 

We can always reduce to the case of finite global dimension by 
regarding R as a quotient of a polynomial algebra 5. An JR-module 
M becomes an S-module. The Poincaré series is unaffected, and 
Xs(M) and Xs(F) are polynomials. 

COROLLARY 2. XR(M)=P(M)/P(R), and P(M) and XR(M) are 

rational functions. 

The relation XR(M)=P(M)/P(R) follows from the fact that 
XR(F)P(R)=XR(R) = 1-

COROLLARY 3. XR(M) =Oif and only if M=* (0). 

Call M of dimension a t most n if there are positive integers 
du - • • , dn such that P(M)]J^(1 —tdi) is a polynomial in t. 

THEOREM 4. The R-module M is of dimension at most n if and only 
if there exist homogeneous elements yi, • • • , yn in R such that M is 
finitely generated over the subalgebra F[yu • • • , yn]* 
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If P(Af) 11(1 — tdi) is a polynomial it is not true that we can always 
choose yi, • • • , yn of degrees di, • • • , dn- For example, let M~R 
= F[x, y] where x is an indeterminant of degree two and y is a non­
zero element of degree one with y2 = 0. The Poincaré series is 

P(M) = (1 + 0/(1 - t*) - V(l - 0 

but R contains no element yi of degree one with M finitely generated 
over F[yi]. 

COROLLARY. If R~F[yu • • • , yn] then every M in C(R) is of 
dimension at most n. 
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