A SELF-UNIVERSAL CRUMPLED CUBE WHICH IS NOT UNIVERSAL

BY CHARLES D. BASS1 AND ROBERT J. DAVERMAN2

Communicated by Steve Armentrout, January 23, 1970

C. E. Burgess and J. W. Cannon [2, $\S10$] have asked whether each self-universal crumpled cube is universal. In this note we give a negative answer to their question by showing that the familiar solid Alexander horned sphere K is not universal. Casler has shown that K is self-universal [3].

A crumpled cube C is a space homeomorphic to the union of a 2-sphere S topologically embedded in the 3-sphere S^3 and one of its complementary domains. The boundary of C, denoted Bd C, is the image of S under the homeomorphism. A sewing h of two crumpled cubes C and C^* is a homeomorphism of Bd C to Bd C^* . The space $C \cup_h C^*$ given by a sewing h is the identification space obtained from the (disjoint) union of C and C^* by identifying each point p in Bd C with h(p) in Bd C^* .

A crumpled cube C is *universal* if, for each crumpled cube C^* and each sewing h of C and C^* , the space $C \cup_h C^*$ is topologically equivalent to S^3 . Similarly, a crumpled cube C is self-universal if $C \cup_f C = S^3$ for each sewing f of C to itself.

1. A bad sewing. In order to define the desired sewing of the solid Alexander horned sphere K to another crumpled cube K^* , we describe an upper semicontinuous decomposition of S^* into points and almost tame arcs.

Let H_1 and H_2 denote the upper and lower half spaces of E^3 , and P the xy-plane. Let A_0 denote a solid double torus embedded in E^3 as shown in Figure 1 such that A_0 intersects P in two disks D_1 and D_2 . Letting T_1 and T_2 denote solid double tori embedded in A_0 as shown in Figure 1, we define A_1 as $T_1 \cup T_2$. Assuming sets A_0 , A_1 , \cdots , A_{n-1} have been defined, we let A_n be the union of 2^n solid double tori contained in A_{n-1} such that each double torus T of A_{n-1} contains exactly two components of A_n , which are embedded in T just as T_1 and T_2 are embedded in A_0 .

AMS Subject Classifications. Primary 5478; Secondary 5701.

Key Words and Phrases. Crumpled cube, sewing of crumpled cubes, universal crumpled cube, self-universal crumpled cube, upper semicontinuous decomposition, tame arcs, slicing homeomorphisms.

¹ Supported by a NASA Traineeship.

² Partially supported by NSF Grant GP 8888.

FIGURE 1

Let G' denote the upper semicontinuous decomposition of E^s whose nondegenerate elements are the components of $\bigcap_{j=1}^{\infty} A_j$. By requiring that the components of A_n become skinny as n gets large, we force the nondegenerate elements of G' to be arcs which are locally tame except at their lower end points.

With the addition of an ideal point ∞ , G' extends to a decomposition G of S^3 .

THEOREM 1. The decomposition space S^3/G is not homeomorphic to S^3 .

The proof of Theorem 1 is discussed in the next section.

THEOREM 2. Let K denote the solid Alexander horned sphere. There exists a sewing h of K to a crumpled cube K^* such that $K \cup_h K^*$ is not homeomorphic to S^3 .

PROOF. Let π denote the natural projection of S^3 to S^3/G , and let $H_i^* = H_i \cup \{\infty\}$ (i = 1, 2). Note that $\pi(H_1^*)$ is topologically equivalent

to K, and $\pi(H_2^*)$ is a crumpled cube K^* . The required sewing h is the one induced by π such that $K \cup_h K^*$ and S^3/G are homeomorphic.

REMARK. The procedure for defining K^* is suggested by Stallings' crumpled cube [4].

2. Slicing homeomorphisms. Let k be a nonnegative integer. A homeomorphism k of Bd $A_0 \cup D_1 \cup D_2 \cup D_3$ into A_0 such that $k \mid \text{Bd } A_0$ = identity is said to be *slicing at stage* k if, for each solid double torus T of A_k , each component of $T \cap h(D_i)$ (i=1, 2, 3) is a disk embedded in T just like a component of $T \cap P$.

A homeomorphism h slicing at stage k is said to satisfy Property P_k if for some double torus T of A_k there exist components X_1 , X_2 , and X_3 of $T \cap h(\bigcup D_i)$ such that

- (a) $X_1 \cup X_2 \subset h(D_{i_1} \cup D_{i_2})$,
- (b) $X_3 \cap h(D_{i_1} \cup D_{i_2}) = \emptyset$,
- (c) X_3 separates X_1 from X_2 in T.

Theorem 1 is an immediate consequence of [1, Theorem 2] and the following lemmas.

- LEMMA 1. If h is a homeomorphism slicing at stages k and k+1 and satisfying Property P_k , then h satisfies Property P_{k+1} .
- LEMMA 2. If h is a homeomorphism slicing at stage k+1, then there exists a homeomorphism h^* slicing at stages k and k+1 such that for each component T of A_{k+1} , $T \cap h(D_i) = \emptyset$ implies $T \cap h^*(D_i) = \emptyset$ (i = 1, 2, 3).
- LEMMA 3. Every homeomorphism slicing at stage k satisfies Property P_k .

LEMMA 4. If there exists a nonnegative integer k and a homeomorphism g of Bd $A_0 \cup D_1 \cup D_2 \cup D_3$ into A_0 such that $g \mid \text{Bd } A_0 = \text{identity}$ and each component T of A_k intersects at most one of the disks $g(D_i)$, then there exists a homeomorphism h slicing at stage k that fails to satisfy Property P_k .

REFERENCES

- 1. S. Armentrout, Decompositions of E³ with a compact 0-dimensional set of non-degenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165-177. MR 33 #3279.
- 2. C. E. Burgess and J. W. Cannon, *Embeddings of surfaces in E*³, Rocky Mountain J. Math. (to appear).
- 3. B. G. Casler, On the sum of two solid Alexander horned spheres, Trans. Amer. Math. Soc. 116 (1965), 135-150. MR 32 #3049.
- J. Stallings, Uncountably many wild disks, Ann. of Math. (2) 71 (1960), 185–186.
 MR 22 #1871.

University of Tennessee, Knoxville, Tennessee 37916