ON STRUCTURAL STABILITY¹

BY J. W. ROBBIN

Communicated by Stephen Smale, January 26, 1970

The purpose of this note is to sketch a proof of

THEOREM A. A C² diffeomorphism (on a compact, boundaryless manifold) which satisfies Axiom A and the strong transversality condition is structurally stable.

This is (one direction of) a conjecture of Smale [3]. The case where the nonwandering set is finite is the main theorem of [4]. For background, see [2] and [3]. Details will be given in a subsequent publication.

1. An infinitesimal condition. Throughout, M denotes a smooth, compact, boundaryless manifold and $f: M \rightarrow M$ a diffeomorphism. A chart on M is a pair (α, U) where U is an open subset of M and α maps a neighborhood of \overline{U} diffeomorphically onto an open subset of Euclidean space R^m .

Let $\mathfrak{X}^0(M)$ denote the Banachable space of all continuous vector fields on M. Let $f^{\sharp}: \mathfrak{X}^0(M) \to \mathfrak{X}^0(M)$ be the continuous linear operator defined by $f^{\sharp} \eta = Tf^{-1} \circ \eta \circ f$ for $\eta \in \mathfrak{X}^0(M)$.

Fix a Riemannian metric on M and let d denote the corresponding metric on M; i.e., for $x, y \in M$, d(x, y) is the infimum of the lengths of all curves from x to y. We define a new metric d_f by

$$d_f(x, y) = \sup_n d(f^n(x), f^n(y))$$

where the supremum is over all integers n. Let $\mathfrak{X}_f(M)$ denote the set of all $\eta \in \mathfrak{X}^0(M)$ with the property that for every chart (α, U) on M there exists K > 0 such that

$$|\eta_{\alpha}(x) - \eta_{\alpha}(y)| \leq Kd_f(x, y)$$

for all $x, y \in U$. Here $\eta_{\alpha} \colon U \to \mathbb{R}^m$ is defined by $T\alpha \circ \eta(x) = (\alpha(x), \eta_{\alpha}(x))$ for $x \in U$. By standard techniques $\mathfrak{X}_f(M)$ can be made into a Banachable space. The inclusion $\mathfrak{X}_f(M) \to \mathfrak{X}^0(M)$ is continuous and for any finite cover of M by charts (α, U) the K's above can be chosen small if η is sufficiently close to 0 in $\mathfrak{X}_f(M)$.

AMS Subject Classifications. Primary 3465, 5720; Secondary 3451, 5750.

Key Words and Phrases. Structurally stable, Axiom A, strong transversality condition, Anosov diffeomorphism, locally Anosov diffeomorphism, unrevisited, spectral decomposition.

¹ This work was partially supported by NSF Grant GP-11495.

As f is C^2 , f^{\sharp} restricts to a continuous linear operator on $\mathfrak{X}_f(M)$. Recall that a continuous linear operator is split surjective if and only if it has a continuous linear right inverse. Let 1 denote the identity operator.

THEOREM B. If $1-f^{\#}: \mathfrak{X}_{f}(M) \to \mathfrak{X}_{f}(M)$ is split surjective, then f is structurally stable.

Sketch of Proof. We must show that if g is a diffeomorphism which is sufficiently close to f in the C^1 topology, then there is a homeomorphism $\phi: M \to M$ such that $g \circ \phi = \phi \circ f$. Following Moser [1] we write $\phi = \exp(\eta)$ and $g = f \circ \exp(\xi)$ where η and ξ are vector fields (η is C^0 and ξ is C^1). Here $\exp: TM \to M$ is an exponential map. The equation $g \circ \phi = \phi \circ f$ becomes $\exp(\xi) \circ \exp(\eta) = f^{-1} \circ \exp(\eta) \circ f$ which may be written in the form

$$(1-f^{\#})(\eta)=R(\eta)$$

where $R: \mathfrak{X}^0(M) \to \mathfrak{X}^0(M)$ is a C^1 map which is C^1 close to zero for small $\eta \in \mathfrak{X}^0(M)$ when the C^1 norm $\|\xi\|_1$ of ξ is small. To find a solution for this last equation it suffices to solve $\eta = J \circ R(\eta)$ where J is a continuous linear right inverse to $1-f^{\sharp}$ on $\mathfrak{X}_f(M)$. It is not difficult to show that for arbitrarily small closed neighborhoods B of 0 in $\mathfrak{X}_f(M)$, $J \circ R$ maps B to B and is a contraction in the C^0 norm provided $\|\xi\|_1$ is sufficiently small (i.e., g is C^1 close to f). Hence this last equation may be solved (in a preassigned neighborhood of 0 in $\mathfrak{X}_f(M)$) via the Banach contraction principle.

It remains to show that $\phi = \exp(\eta)$ is a homeomorphism. It is homotopic to the identity and hence of degree one and hence onto; we need only show it is one-one. Suppose $\phi(x) = \phi(y)$. Then $\phi(f^n(x)) = g^n(\phi(x)) = g^n(\phi(y)) = \phi(f^n(y))$ so we may assume that

$$d_f(x, y) \leq 2d(x, y).$$

Given a finite cover of M by charts (α, U) there exists a>0 such that

$$ad(x, y) \leq d(\exp(\dot{x}), \exp(\dot{y})) + |v - w|$$

for each chart (α, U) of the cover, all $x, y \in U$, all sufficiently small $\dot{x} \in T_x M$ and $\dot{y} \in T_y M$ and where $T\alpha \dot{x} = (\alpha(x), v)$ and $T\alpha \dot{y} = (\alpha(y), w)$. Taking $\dot{x} = \eta(x)$ and $\dot{y} = \eta(y)$ we obtain

$$ad(x, y) \leq d(\phi(x), \phi(y)) + |\eta_{\alpha}(x) - \eta_{\alpha}(y)|.$$

However, $|\eta_{\alpha}(x) - \eta_{\alpha}(y)| \le Kd_f(x, y) \le 2Kd(x, y)$ where K can be made small. Hence

$$(a - 2K)d(x, y) \le d(\phi(x), \phi(y)) = 0$$

which implies that x = y. End of argument.

f is called expansive iff there exists $\epsilon > 0$ such that $d_f(x, y) \ge \epsilon$ for all $x, y \in M$ with $x \ne y$. If f is expansive, then $\mathfrak{X}_f(M) = \mathfrak{X}^0(M)$ (as Banachable spaces). Now an Anosov diffeomorphism is expansive and f is Anosov if and only f^{\sharp} is a hyperbolic operator on $\mathfrak{X}^0(M)$. Thus the structural stability of Anosov diffeomorphisms (see [1]) follows from Theorem B.

2. Locally Anosov diffeomorphisms. For $Z \subseteq M$ let

$$Z^{f} = \bigcup_{n} f^{n}(Z), \qquad Z^{f+} = \bigcup_{n \geq 0} f^{n}(Z), \qquad Z^{f-} = \bigcup_{n \leq 0} f^{n}(Z).$$

Thus $Z' = Z'^+ \cup Z'^-$ is the smallest f-invariant set containing Z. We shall say that Z is f-unrevisited iff the conditions $x \in Z$ and $f^n(x) \in Z$ imply that $f^q(z) \in Z$ for q between 0 and n.

DEFINITION. f is locally Anosov iff there exist open sets $Z_1, \dots, Z_k \subseteq M$; continuous subbundles E_i^s and E_i^u of $TM \mid Z_i^t$ $(i=1, \dots, k)$; a Riemannian metric $\| \|$ on M; and a real number λ with $0 < \lambda < 1$ such that for $i, j = 1, \dots, k$ and $\sigma = s, u$:

- (1) \overline{Z}_i is f-unrevisited;
- $(2) M = Z_1^f \cup \cdots \cup Z_k^f;$
- (3) $\overline{Z}_i \cap \overline{Z}_j = \emptyset$ for $i \neq j$;
- (4) $TM \mid Z_i^t = E_i^s \oplus E_i^u$;
- (5) $Tf(E_{ix}^{\sigma}) = E_{if(x)}^{\sigma} \text{ for } x \in \mathbb{Z}_{i}^{f};$
- (6) $||Tf\dot{x}|| \le \lambda ||\dot{x}||$ for $\dot{x} \in E_i^s |Z_i, ||Tf^{-1}\dot{y}|| \le \lambda ||\dot{y}||$ for $\dot{y} \in E_i^u |Z_i;$
- (7) $E_{ix}^s \subseteq E_{jx}^s$ and $E_{jx}^u \subseteq E_{ix}^u$ for $x \in Z_i^{f+} \cap Z_j^{f-}$;
- (8) E_t^{σ} is d_f -Lipschitz, i.e., it is given locally as the span of vector fields in $\mathfrak{X}_f(M)$.

Note that an Anosov diffeomorphism is locally Anosov. (Take k=1 and $Z_1=M$ and choose λ and $\|\cdot\|$ as in [1].)

THEOREM C. If f is C^2 and locally Anosov, then $1-f^{\sharp}: \mathfrak{X}_f(M) \to \mathfrak{X}_f(M)$ is split surjective.

Sketch of Proof. Choose a partition of unity $\theta_1, \dots, \theta_k$ subordinate to the cover Z_1^f, \dots, Z_k^f . For $\eta \in \mathfrak{X}_f(M)$, $\operatorname{supp}(\theta_i \eta) \subseteq Z_t^f$ and we may resolve $\theta_i \eta$ into components along E_i^s and E_i^u . Thus $\theta_i \eta = \eta_{is} + \eta_{iu}$ where $\eta_{i\sigma}(x) \in E_{tx}^{\sigma}$ for $x \in Z_t^f$ and $\sigma = s$, u and $\operatorname{supp}(\eta_{i\sigma}) \subseteq \operatorname{supp}(\theta_i) \subseteq Z_t^f$. Clearly, the linear operator $\eta \longrightarrow \eta_{i\sigma}$ is a continuous linear operator on $\mathfrak{X}_f(M)$. We define $J_{i\sigma}(\eta)$ by the "Neumann series":

$$J_{iu}(\eta) = \sum_{n=0}^{\infty} (f^{\sharp})^n(\eta_{iu}), \qquad J_{is}(\eta) = -\sum_{n=1}^{\infty} (f^{\sharp})^{-n}(\eta_{is}).$$

It can be shown that these series converge uniformly to an element of $\mathfrak{X}_f(M)$ (compare with [1]) and that each $J_{i\sigma}$ is a continuous linear operator on $\mathfrak{X}_f(M)$. Clearly

$$(1 - f^{\#})J_{i\sigma}(\eta) = \eta_{i\sigma}$$

so we may define $J: \mathfrak{A}_f(M) \to \mathfrak{A}_f(M)$ by

$$J = \sum_{\sigma=s,u} \sum_{i=1}^k J_{i\sigma}.$$

Then

$$(1 - f^{\#})J(\eta) = \sum_{\sigma} \sum_{i} \eta_{i\sigma} = \eta.$$

End of argument.

3. Proof of Theorem A. Let f be a C^2 diffeomorphism which satisfies Axiom A and the strong transversality condition. Theorem A is proved by showing that f is locally Anosov.

Let Ω be the nonwandering set of f and E^s , E^u the invariant splitting of $TM \mid \Omega$ guaranteed by Axiom A. Write $\Omega = \Omega_1 \cup \cdots \cup \Omega_k$ as in the spectral decomposition theorem (see [2]). We say that $\Omega_j \leq \Omega_i$ iff $\mathbb{Z}_j^+ \cap \mathbb{Z}_i^+ \neq \emptyset$ for all neighborhoods Z_i of Ω_i and Z_j of Ω_j . This is a partial ordering (see [2]).

To verify that f is locally Anosov one must extend $E^{\sigma}|\Omega_i$ $(\sigma = s, u; i = 1, \dots, k)$ to E_i^{σ} defined on Z_i^f where Z_i is a neighborhood of Ω_i . This is done via induction on the above partial ordering and the construction is similar to the construction of the "tubular families" of [4].

REFERENCES

- J. Moser, On a theorem of Anosov, J. Differential Equations 5 (1969), 411-440.
 MR 38 #6633.
- 2. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
- 3. ——, Global stability questions in dynamical systems, Lectures in Modern Analysis, vol. I, Springer, Berlin, 1969, pp. 150-158.
 - 4. S. Smale and J. Palis, Structural stability theorems, (to appear).

University of Wisconsin, Madison, Wisconsin 53706