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1. Introduction. Let A and B be selfadjoint operators on a Hubert 
space. If these operators are unbounded the problem of interpreting 
their sum as a selfadjoint operator is not trivial. Of course, if the alge­
braic sum A+B, defined on the common domain D(A)C\D(B), is 
selfadjoint or has a selfadjoint closure there is no difficulty. But in 
general A -\-B may have infinitely many different selfadjoint exten­
sions; indeed, D(A+B) may reduce to (0); or, on the other hand, 
A +B need admit no selfadjoint extension. 

One reason for the study of such questions arises in physics: in 
many quantum mechanical systems the Hamiltonian operator is the 
formal sum of a well-defined "free" Hamiltonian A and an "interac­
tion" Hamiltonian B. It follows from a result of Trotter [5] that if the 
closure cl(^4 +B) = C is selfadjoint then the Lie product formula 

(1) lim (eWnAeitinBy _ euc 
n—>oo 

is valid. (For a proof of a more general product formula, see [l].) 
Interestingly, however, Nelson [4] demonstrated that the limit in (1) 
can exist even if A +B is not essentially selfadjoint, and can success­
fully be used to define the dynamical group, and therefore the Hamil­
tonian operator, for certain quantum systems. 

It is therefore of interest to study the general properties of product 
limits like the above, and in particular their use to define a generalized 
addition for unbounded operators. In this paper we shall state a 
number of results in this area. Proofs of these and additional results 
will be given elsewhere. 

2. Product limits. Let X be a Banach space. Let F(t), 0 ^ / < o o , 
be a strongly continuous function whose values are linear contraction 
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operators on X. We also require that F(0) = 7, the identity. An ex­
ample is given by F(t) = PtQt where Pt and Qt are (C0) contraction 
semigroups on X. By the strong derivative F'(0) we mean the 
operator 

Ff(0)x = lim (F(t)x - x)/t 
*-*o 

defined for all x(~X for which the limit exists. 

THEOREM 2.1. Suppose that F'(0) is densely defined. Assume that for 
all t^O the limit 

(2) lim F(t/n)n = Rt 
n—>oo 

exists in the strong operator topology. Then Rt is a (Co) contraction 
semigroup. The infinitesimal generator of Rt is an extension of F'(Q). 

REMARK. Examples exist which show that the limit in (2) can exist 
with ^'(O) not densely defined. 

THEOREM 2.2. With no hypothesis on F'(0), suppose only that the 
limit in (2) exists in the strong topology. Then Rt is a semigroup and is 
strongly continuous f or t>0. (However, Rt need not be continuous at 0.) 

Concerning the proofs of these theorems, it is easy to see that Rt 
satisfies the functional equation 

(3) Rut = (Rt)* 

for every positive integer n. I t follows that Rs+t — RsRt if the ratio 
s ft is a rational number. The essential difficulty, therefore, is estab­
lishing the continuity of Rt. A special argument does this in 2.1. In 
the proof of the more general result 2.2 one makes use of the following 
proposition, which may be of some intrinsic interest. 

PROPOSITION 2.2.1. Let Rt be a strongly measurable operator valued 
solution of the functional equation (3). Then there exists a semigroup Rt, 
strongly continuous for / > 0 , such that Rt — Rt for a.e.t. Rt is a (Co) 
semigroup if and only if the essential span of the ranges of the operators 
Rt is dense. 

One can deduce that Rt^Rt if one knows that Rt has a "large" set 
of points of continuity in the sense of Baire category, and this is in 
fact the case under the hypotheses of 2.2. 

COROLLARY 2.3. If H is a Hilbert space and F(t) is a strongly con­
tinuous function from ( —• QO , oo ) to the unitary operators on H, such 
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that strong lim^i-*,» F(t/n)n = Ut exists, then Ut is a strongly continuous 
one-parameter unitary group. 

REMARK. In 2.2, assume that Rt is a (Co) semigroup and let A be 
its infinitesimal generator. From 2.1 we know that A extends ^'(0) 
if this operator is densely defined. I t is worth noting that (at least 
under a certain technical auxiliary condition) A extends F'(Q) even 
if the latter is not densely defined. 

3. Addition of unbounded operators. Let Ut = eitA and Vt = eitB be 
one-parameter unitary groups such that (Ut/nVt/n)

n converges in the 
strong topology to Wu By 2.3 it follows that Wt~eitc for some self-
adjoint operator C. We regard C as the sum of A and B in a general­
ized sense, and we write C — A ®B. We say that A and B are addable 
if the above limit exists. I t is easy to see that B@A exists if A ®B 
exists, and the two are equal. Thus this generalized addition is com­
mutative. One also has \(A ®B) =\A ®\B for real scalars X. 

Unfortunately the operation © is not associative. Indeed, no rea­
sonable associative addition process exists for unbounded self ad joint 
operators, because A, B—>c\(A+B) is nonassociative. To see this, 
let 5 be any densely defined symmetric operator with distinct selfad-
joint extensions A, B. Then cl(^4— B)=0, i.e. A®(—B)=0. Thus 
(A®(-B))®B=B. But A®(-B®B)=A. Incidentally, this ex­
ample also exhibits the failure of the cancellation law: we have 
A®(—B)=0 = B®( — B), though A^B. More drastic examples of 
nonassociativity exist; the common domain of A®(B®C) and 
(A ®B) ® C can reduce to (0). 

In the light of the above remarks the following result is reassuring; 
it is also interesting in that it shows that the addability of a pair of 
operators is stable under bounded perturbations. 

THEOREM 3.1. If A@B exists and C is bounded then A®(B + C) 
exists and equals A ®B + C. 

The proof makes use of a perturbation series; cf. [3, Theorem 
13.2.1]. 

We also have the following result for positive operators. 

THEOREM 3.2. Suppose that A and B are positive and addable. Then 
A®B is positive. 

4. Operators defined by Friedrichs extensions. Let A and B be 
positive selfadjoint operators on H. Let Hi =D(A112), a Hilbert space 
with respect to the "graph" norm p | | i = ( p | | 2 + | | ^ ^ 2 ^ | | 2 ) ^ 2 . Then 
we have natural norm-decreasing inclusions HiC.HC.Hi. Regard By 

HiC.HC.Hi
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restricted to Hi, as a map from Hi to H*. If its closure B is selfadjoint 
(as an operator from a reflexive Banach space to its dual) we set 
C = Â + B. Let Cbe the restriction of C to D(Q= {heD(C):Ch<EH}. 
Then one can show that C is a positive selfadjoint operator on H; it is 
an extension of A -\-B. 

The following theorem generalizes a result of Faris [2]. 

THEOREM 4.1. Suppose either that B is bounded or that B is essentially 
selfadjoint on D{A)C\D{B). Then f or t^O 

strong \\m(e-tlnAe~tlnB)n = e~tc. 
n—> » 

5. Boundedness of universally addable operators. If A+B is 
densely defined we know by 2.1 that A @Bf if it exists, is a selfadjoint 
extension of the symmetric operator A+B. It is well known that 
symmetric operators exist which possess no selfadjoint extensions, 
and it is not hard to exhibit operators of the form A +B with this 
property. However, much more is true. 

THEOREM 5.1. Let A be any unbounded selfadjoint operator. Then 
there exists a selfadjoint operator B {necessarily unbounded) such that 
A+B is a densely defined symmetric operator with deficiency indices 
(1, 0). In particular A+B has no selfadjoint extensions. 

It follows that if A is unbounded A @B fails to exist for some B. 
Consequently, the only universally addable selfadjoint operators are 
the bounded ones. 
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