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In what follows, C is a closed convex subset of the real, reflexive,
strictly convex Banach space X. If FCC, we shall call F a nonexpan-
sive retract of C if either F=¢ or there is a retraction of C onto
F which is a nonexpansive mapping.

THEOREM 1. If T: C—C is nonexpansive, then F(T), the fixed point
set of T, is a nonexpansive retract of C.

THEOREM 2. The class of nonexpansive retracts of C is closed under
arbitrary intersections.

To prove these theorems, suppose F is a nonempty subset of C,
and set § = {f: C—C|f is nonexpansive and FC F(f) }. Define an order
on § by setting f<g if fo—fyH éllgx—gyll for all (x, y) €CXC, with
strict inequality holding for at least one pair (x, y); then set f<g to
mean f<g or f=g. Then = is a partial ordering of &.

Every linearly ordered subset of § has a lower bound in &; the
proof of this fact utilizes the local weak compactness of C and the
weak lower semicontinuity of the norm. Therefore, by Zorn’s lemma,
& has a minimal element.

The strict convexity of X implies that for each gE&F there exists a
20EF with F(go)=F(g) and such that whenever “go(u) —go(w)H
=||u—-w”, then go(#) —go(w) =u—w. For example, we may take
go=%I-+1%g, where I is the identity function for C.

Suppose f is a minimal function in ¥, and g is any function of &.
Let go be the function of the preceding paragraph; then gfEF
while gof =f. By the minimality of f, therefore gof =f.

Letting R(f) denote the range of f, therefore

) F(f) C R(f) C F(g0) = F(g),
and in particular,
(2 F(fyCF(p forgesd.
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Taking g=fin (1), we see that F(f) = R(f), so that f is a nonexpan-
sive retraction onto F(f). From (2), if f and g are minimal elements of
&, then F(f)= F(g).

We claim that this common set F(f) is the smallest nonexpansive
retract F’ of C with F'"DF. If the g of (2) is any nonexpansive retrac-
tion with F(g)=F', we have from (2) that FCF(f)CF’, which is
just our claim.

To prove Theorem 1, suppose F(T)#=&. Set F=F(T) and let f
be a minimal element of §. Taking g=T in (2), F(f)C F(T), while
F(T)CF(f) in order for fEF; thus f is a nonexpansive retraction of
C onto F(f)=F(T). q.ed.

To prove Theorem 2, suppose Fy is a nonexpansive retract of C
for N\EA. Set F= F\; we may suppose F#= . We have already
remarked that if f is a minimal element of &, then FC F(f) CF’ for
all nonexpansive retracts F’; in particular, F(f) CF) for each N\, so

FCF(f) CNF\=F,
A

and f is the required nonexpansive retraction. q.e.d.
A retraction f of C onto F will be called a ray retraction if whenever
g&C is on the ray from f(p) through p, we have f(¢) =f(p).

THEOREM 3. Suppose X * is siricily convex and F is a nonempty non-
expansive retract of C. Then there is at most one nonexpansive ray re-
traction f of C onto F; if it exists 1t must satisfy

3) 7@ = 7@l* = GG®) — @), 2 ~ 9)

for all p, q in C. Conversely, a retraction satisfying (3) is a nonexpan-
sive ray retraction.

A nonexpansive ray retraction is known to exist if:

(@) FN\B is strongly compact for each ball B in X, or

(b) X s uniformly convex and Jx,—0 in X* whenever x,—0 in X.

(Here J: X—X* is the normalized duality mapping and — denotes
weak convergence.)

The proof of Theorem 3 is substantially different from the proofs
of the other theorems; it utilizes an approximation scheme of F. E.
Browder [1] to construct nonexpansive mappings xx: C—C satisfying

() = A-glan(p) + (A1 —N)-p

for 0<A <1, pEC, where g is a nonexpansive retraction of C onto F.
It is then shown that under hypothesis (a) or (b), a strong limx.1 22 (p)
=f(p) exists and when such a strong limit exists, f satisfies condition
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(3) of the theorem. Furthermore, if g is already a nonexpansive ray
retraction, then s—lima,1 xa(p) =g(p); thus nonexpansive ray re-
tractions must satisfy (3).

It is expected that detailed proofs of these and related theorems
will appear elsewhere.
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