NONEXPANSIVE RETRACTS OF BANACH SPACES

BY RONALD E. BRUCK, JR.1

Communicated by Felix Browder, September 30, 1969

In what follows, C is a closed convex subset of the real, reflexive, strictly convex Banach space X. If $F \subset C$, we shall call F a nonexpansive retract of C if either $F = \emptyset$ or there is a retraction of C onto F which is a nonexpansive mapping.

THEOREM 1. If $T: C \rightarrow C$ is nonexpansive, then F(T), the fixed point set of T, is a nonexpansive retract of C.

THEOREM 2. The class of nonexpansive retracts of C is closed under arbitrary intersections.

To prove these theorems, suppose F is a nonempty subset of C, and set $\mathfrak{F} = \{f \colon C \to C \mid f \text{ is nonexpansive and } F \subset F(f)\}$. Define an order on \mathfrak{F} by setting f < g if $||fx - fy|| \le ||gx - gy||$ for all $(x, y) \in C \times C$, with strict inequality holding for at least one pair (x, y); then set $f \le g$ to mean f < g or f = g. Then \le is a partial ordering of \mathfrak{F} .

Every linearly ordered subset of \mathfrak{F} has a lower bound in \mathfrak{F} ; the proof of this fact utilizes the local weak compactness of C and the weak lower semicontinuity of the norm. Therefore, by Zorn's lemma, \mathfrak{F} has a minimal element.

The strict convexity of X implies that for each $g \in \mathfrak{F}$ there exists a $g_0 \in \mathfrak{F}$ with $F(g_0) = F(g)$ and such that whenever $||g_0(u) - g_0(w)|| = ||u - w||$, then $g_0(u) - g_0(w) = u - w$. For example, we may take $g_0 = \frac{1}{2}I + \frac{1}{2}g$, where I is the identity function for C.

Suppose f is a minimal function in \mathfrak{F} , and g is any function of \mathfrak{F} . Let g_0 be the function of the preceding paragraph; then $g_0 f \in \mathfrak{F}$ while $g_0 f \leq f$. By the minimality of f, therefore $g_0 f = f$.

Letting R(f) denote the range of f, therefore

(1)
$$F(f) \subset R(f) \subset F(g_0) = F(g),$$

and in particular,

(2)
$$F(f) \subset F(g)$$
 for $g \in \mathfrak{F}$.

AMS Subject Classifications. Primary 4610, 4780; Secondary 4160, 4785, 5230. Key Words and Phrases. Duality mapping, fixed point set, nonexpansive mapping, nonexpansive retract, ray retraction.

¹ Part of this research was conducted while the author held a National Science Foundation Graduate Fellowship at the University of Chicago under the supervision of Professor Felix Browder.

Taking g = f in (1), we see that F(f) = R(f), so that f is a nonexpansive retraction onto F(f). From (2), if f and g are minimal elements of \mathfrak{F} , then F(f) = F(g).

We claim that this common set F(f) is the smallest nonexpansive retract F' of C with $F' \supset F$. If the g of (2) is any nonexpansive retraction with F(g) = F', we have from (2) that $F \subset F(f) \subset F'$, which is just our claim.

To prove Theorem 1, suppose $F(T) \neq \emptyset$. Set F = F(T) and let f be a minimal element of \mathfrak{F} . Taking g = T in (2), $F(f) \subset F(T)$, while $F(T) \subset F(f)$ in order for $f \in \mathfrak{F}$; thus f is a nonexpansive retraction of C onto F(f) = F(T). q.e.d.

To prove Theorem 2, suppose F_{λ} is a nonexpansive retract of C for $\lambda \subset \Lambda$. Set $F = \bigcap_{\lambda} F_{\lambda}$; we may suppose $F \neq \emptyset$. We have already remarked that if f is a minimal element of \mathfrak{F} , then $F \subset F(f) \subset F'$ for all nonexpansive retracts F'; in particular, $F(f) \subset F_{\lambda}$ for each λ , so

$$F \subset F(f) \subset \bigcap_{\lambda} F_{\lambda} = F,$$

and f is the required nonexpansive retraction. q.e.d.

A retraction f of C onto F will be called a ray retraction if whenever $q \in C$ is on the ray from f(p) through p, we have f(q) = f(p).

THEOREM 3. Suppose X^* is strictly convex and F is a nonempty non-expansive retract of C. Then there is at most one nonexpansive ray retraction f of C onto F; if it exists it must satisfy

(3)
$$||f(p) - f(q)||^2 \le (J(f(p) - f(q)), p - q)$$

for all p, q in C. Conversely, a retraction satisfying (3) is a nonexpansive ray retraction.

A nonexpansive ray retraction is known to exist if:

- (a) $F \cap B$ is strongly compact for each ball B in X, or
- (b) X is uniformly convex and $Jx_n \rightarrow 0$ in X^* whenever $x_n \rightarrow 0$ in X.

(Here $J: X \rightarrow X^*$ is the normalized duality mapping and \rightarrow denotes weak convergence.)

The proof of Theorem 3 is substantially different from the proofs of the other theorems; it utilizes an approximation scheme of F. E. Browder [1] to construct nonexpansive mappings $x_{\lambda}: C \rightarrow C$ satisfying

$$x_{\lambda}(p) = \lambda \cdot g(x_{\lambda}(p)) + (1 - \lambda) \cdot p$$

for $0 < \lambda < 1$, $p \in C$, where g is a nonexpansive retraction of C onto F. It is then shown that under hypothesis (a) or (b), a strong $\lim_{\lambda \to 1} x_{\lambda}(p) = f(p)$ exists and when such a strong limit exists, f satisfies condition

(3) of the theorem. Furthermore, if g is already a nonexpansive ray retraction, then $s-\lim_{\lambda\to 1} x_{\lambda}(p) = g(p)$; thus nonexpansive ray retractions must satisfy (3).

It is expected that detailed proofs of these and related theorems will appear elsewhere.

REFERENCE

1. F. E. Browder, Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90. MR 34 #6582.

University of Southern California, Los Angeles, California 90007