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1. Introduction. We introduce here a finite set of polynomials 
orthogonal over N distinct points of [ — 1, l ] which are a very close 
analog of the Legendre polynomials. This set appears to have most 
of the properties of the Legendre (and ultraspheric) polynomials, 
yet they are not Fejér "generalized Legendre polynomials" (Szegö 
[4, §6.5 ]). These polynomials converge like 1/N2 to the Legendre poly­
nomials, in contrast to the Hahn polynomials (a = j3 = 0) which con­
verge like 1/N. (See Karlin and McGregor [2], Levit [3].) In every 
respect, they appear to be a superior analog of the Legendre poly­
nomials than the Hahn polynomials (sometimes called the Gram or 
Chebyshev polynomials of discrete least squares). 

2. The inner product. The Hahn polynomials arise naturally from 
equidistant point sets. In approximation theory, useful point sets are 
the zeros of the Chebyshev polynomials of the first and second kind 
(Tn(x) and Un{pc)). L e t # = 7r/(iV-f-l), andi^ = ^>. Let ^ = cos(^) , and 
Wi = sm(i<j>)y i = 1, 2, • • • , N. Let [ , ]N be the inner product defined 
by [ƒ, g]N = 2 ta.nfjy^WifMgfa), and let (ƒ, g)=fl-xf(t)g(t)dt. 

By means of the identity 

N 

JZ sin ka<i> = cotan a^, a = 1, 3, 5, • • • , 

= 0, a = 0, 2, 4, • • • 

one can show [l , l]ar = 2, and that for fixed n, N^n^l, [tn, tn]x 
monotonically increases (with N) to (/n, tn), and that [tn, tn]x 
= (*», tn)+0(l/N2). 

If we let Çk(t; iV), fe = 0, 1, • • • , JV—1 be the monic form of the 
orthogonal polynomials of [ , ]N, then, taking account of the sym­
metry of the inner product, the polynomials are given by the recur­
rence, 

q0 = 1 , qi ss t, qn+i = tqn — pn(N)qn-.u n = 1, 2, • • • , N — 2, 

where j3n(A0 = [qn, ffnWkn-i, 2n-i]i\r. The polynomials qn(t\ N) are 
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even or odd with n. There does not appear to be a simple closed form 
expression for f3n(N). Applying Wilson [7], which shows how the 
convergence rate of [l, tk] affects other quantities of a discrete 
orthogonal system, wehave/3n(iV) = n2/(4:n2 — l)+0(N~2). Computa­
tionally, it appears that (3n(N) are monotonie increasing in N for 
fixed n, and monotonie decreasing in n for fixed N. 

Letting kn be the leading coefficient of the Legendre polynomial 
Pn(t), we have 

Qn(t; N) s knqn(t', N) - Pn{t) + 0(N~2), 

using Wilson [7] again. 

3. Expansion properties. One of the most remarkable features of 
these new polynomials is their expansion properties. Let N^n>0, 
and suppressing t and N dependence, let 

(1) Un = AÏQn + AÏ-2Qn-.2 + iC4Q—4 + • • • 

(2) Qn = alun + al-2 Un-2+ • • • 

(3) Qn = Pn + £n-2P«-2 + • ' • 

(4) Qn = ClTn + dLiT^.2 + • • • 

(5) Tn = CnQn + Cn~2Qn-2 + • • • . 

By explicitly evaluating [Tnf Tm] and [Tn, Z7W], using interrela­
tions of the Tn and Un polynomials, induction, and Wilson [5], we 
have shown that all the A's, J3's, C's are positive, an

n and cn
n are posi­

tive for each n> and the remaining ajf and c] are negative, j = n—2, 
n—4, • • • . 

These sign configurations are characteristic of the ultraspheric 
polynomials Pn

a,ol\ for a £ [ - - l / 2 , 1/2]. Loosely speaking, the Q 
polynomials are "above" the Legendre polynomials (a = 0), and 
"below" the second kind Chebyshev polynomials (a = 1/2). Much 
other useful information is obtained in the course of finding these 
patterns, or is inferred by these expansions. Note that the An

ni CJJ, 
a", e» coefficients are easily available explicitly. We have B" mono-
tonically decreasing with N to zero, with order 0(N~~2). This implies 
Qn(l, N) monotonically decreases to 1, with order 0(N~2). From (4), 
we have max{\Qn(t, N)\ | tE [ - 1 , l ] } =Q»(1, N). From (1), we can 
infer that the coefficients C£, C£_2> • * * monotonically decrease (for 
fixed N), and that C£>2CJ, for n even. From this, it follows that if 
the zeros of Qn(t) are cosô£n), v~ 1, 2, • • • , n, then 
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IT < dv < 7T, V — 1 , 2 , • • ' , U 

n + 1 w + 1 

by the same method as Szegö [4, §6.5], 
The monotonicity in (4), coupled with the formula 

c n = 2(2n)l 
w 4»0!)2 

implies that 
2(2w)l r» + 11 

0.(1; iV) < ~ ^ - z - , 

where [x] is the greatest integer containing x. Using Stirling's formula, 
this last quantity can be bounded by (n + 2)/(wn)112. For # = 29, 
this expression is 3.25, compared with (?29(1; 30) = 2.42. 

4. General comments. The polynomial system {Qn(t;N)}*lzl 
appears to share most of the nice properties of the Legendre poly­
nomials, in complete contrast to the Hahn polynomials, which look 
like the Legendre polynomials only for N, the number of points, of 
the order of n2. See Wilson [ó] for some details. Numerical evidence 
suggests that Qn(t\ N)-Qm(t; N) has a nonnegative expansion in the 
Q system polynomials, n+tn<N. Again from computational evi­
dence, the maxima of | Qn(t; N)\ seem to decrease as t moves from 
— 1 to 0, or + 1 to 0, like the Legendre polynomials. 

For finite N, N>n, n^4, we can prove that the sequence Q0, Qi, 
• • • , Qn is not proportional to a set of "Fejér generalized Legendre" 

polynomials; consequently, the polynomials are also not proportional 
to ultraspherical polynomials. Further, the 0(N~2) convergence shows 
that the polynomials are not Hahn polynomials. The work of Wynn 
[9] and Hahn [ l ] then shows that there is no difference analog of 
"Rodrigues* formula" for these polynomials. 

From an approximation viewpoint, numerical experimentation 
shows that for continuous functions ƒ(£) on [ — 1, l ] , the Fourier 
coefficients [ƒ, (?&]#/[()*, Qk\u are much closer to the Legendre-
Fourier coefficient (ƒ, Pk)/(Pk, Pk) than the corresponding coefficient 
for the Hahn or usual least squares polynomial (Wilson [8]). 

Finally, a word about motivation. Consider the inner product 

JV-fl 

where the primes indicate that the first and last terms are weighted 
by 1/2. (We define (0 ) ° s l . ) For a= + 1/2, a = - 1 / 2 , it is well known 
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that the discrete orthogonal polynomials that are generated are respec­
tively Un(t) and Tn(i). These are proportional to the Ultraspherical 
polynomials P<,1/2'1/2) and PrV 2 '~1 / 2 ) . 

Since the Legendre polynomials are Pn'°\ it is natural to try a = 0 
in the above inner product. Riemann sum considerations show that 
for general a, the inner product will generate analogs of the ultra-
spherics. An open question is, what is the order of convergence? 
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