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This is to announce the settling of the following conjecture: Given 
a Lie pseudogroup [ l ] acting transitely on a manifold, is there a 
finite-dimensional subgroup which also acts transitively? The an
swer is, in general, no. We give here an example and, in addition, 
give the Jordan-Holder decomposition of a large class of counter
examples. Finally, we show how these counterexamples occur among 
general transitive pseudogroups. Following [l] and [2], we work in 
the category of transitive (filtered) Lie algebras. Details will appear in 
a forthcoming paper [3]. 

A transitive algebra L is called minimal if, given a transitive sub-
space T [ l ] , L is the smallest transitive subalgebra generated by T. 

THEOREM 1. Every minimal ideal [2] of a minimal transitive Lie 
algebra is abelian. 

According to the results of [2], this theorem is proved if it can be 
shown that a minimal ideal cannot be (a) a simple transitive Lie 
algebra or (b) a simple intransitive Lie algebra. This is accom
plished for (a) by using the results of [4] and for (b) by applying the 
spectral sequence for ideals in Lie algebras [5 ] together with some of 
the techniques of [4]. The classification of the simple infinite-
dimensional Lie algebras [ó] is used repeatedly. 

Using Theorem 1 it is not hard to prove 

THEOREM 2. Every minimal transitive Lie algebra L has the follow
ing Jordan-Holder decomposition: 

LDhDhDhD • • • / . D /H-I = {0}, 

where In/In+i is abelian and L/I\ is either a simple Lie algebra or a 
finite-dimensional abelian Lie algebra. 
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As a result of Theorems l and 2, the simplest way to try to pro
duce a minimal Lie algebra would be to take a simple Lie algebra, 
say si (2, C), the Lie algebra of the special linear group in two vari
ables, and an si(2, C)-module / which is simple (that is, has no sub-
modules except {o} and / ) and look at the semidirect product 
L = sl(2, C) ©I. In most cases, L will not be minimal, because one 
will be able to find a fundamental subalgebra A such that / has 
many non trivial submodules M with respect to the part H of si (2, C) 
not in the fundamental subalgebra. H ©M will then be a proper tran
sitive subalgebra. In order to prevent this, one must have the two 
elements in si (2, C) not in the Cartan subalgebra operating in such a 
way that neither of them preserves an open subspace of / . Upon 
being given these requirements, Thomas Sherman produced such a 
representation of si(2, C): Let I = H^L-oo Ceni with the nitration on 
I defined as Ii=:YL\n\>i Cen* Using E + , E_, H to denote a basis for 
si(2, C), with {H} the Cartan subalgebra, let 

E+en = en+i, 

E~en = (n2 + 7)en_i, y an irrational number, 

Een = (2n + l)en. 

A straightforward argument shows that this algebra is minimal. 
Finally, the following information is obtained about the transi

tive Lie algebras which have no finite-dimensional transitive sub
algebra. The dimension of a transitive Lie algebra is dimension L/LQ. 

THEOREM 3. Every transitive algebra of dimension two or one has a 
finite-dimensional transitive subalgebra. 

The proof makes use of Quillen's generalization of the Schur 
Lemma [7], 

THEOREM 4. Every transitive Lie algebra has a transitive subalgebra 
L with the following Jordan-Holder decomposition: 

LDhDhD ---Din** {0}, 

where Ik/Ik+i is abelian, and L/I\ is either 
(a) finite-dimensional abelian, 
(b) finite-dimensional semisimple, or 
(c) infinite-dimensional simple. 
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