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Let B be a complex Banach algebra with an involution x—*x*. Let 
H denote the set of selfadjoint (s.a.) elements of B and W the subset 
of H consisting of all hÇE.H whose spectrum is entirely real. As in [3] 
we denote the spectral radius of xÇzB by v(x). We prove the following 
result. 

THEOREM. Suppose that there exists c>0 where p(fe)^c||&|| for all 
hÇzH. Then W is closed in B. 

This theorem has consequences for the theory of 5*-algebras. 
Shirali and Ford [4] have recently shown that B is symmetric if 
W=H. Combining this and Lemma 2.6 of [ô] with our theorem, we 
obtain the following result. 

COROLLARY 1. B is a B*-algebra in an equivalent norm if and only 
if Wis dense in H and, for some c>Otv(h)^c\\h\\ for all h£21. 

As usual tf£J8 is said to be normal if xx*=x*x. Let N denote the 
set of normal elements of B. Berkson [l] and Glickfeld [2] have 
shown (in case B has an identity) that B is a 5*-algebra in the given 
norm if \\x*x\\ = 11**1111*11 f° r a ^ * £ N . We obtain an analogous result 
for equivalence to a J3*-algebra. 

COROLLARY 2. B is a B*-algebra in an equivalent norm if and only if, 
for some c>0, the set of x EN f or which ||x*#|| èc||#*||||#|| is dense in N 
and contains H. 

We turn to the proof of our theorem. Let Bi be the algebra obtained 
by adjoining an identity 1 to B and defining, as usual, ||X+#|| 
= |X| +||#|| and (X+#)* = X+x* where X is complex and x&B. We 
show that there exists &>0 such that ^(y)^&||^|| for all y s.a. in J5i. 
For suppose otherwise. Then there exists a sequence {Xw+An}» with 
Xn real and hn£.H, such that |Xn| +IWI —1 a n d vCKn+hn)—>0. By 
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taking a subsequence if necessary we may suppose that X»—»X for 
some X real. Now 

sp(X + hn) = (X — Aw) + sp(Aw + A»), 

If XT^O, this relation and p(X»+&n)—»0 shows that 0(£sp(Aw) for ^ 
sufficiently large. For these n, h~l exists in JBi, which is impossible. 
Since X = 0, we have ||ftn||—»1 whereas v(hn)—>0, contrary to our 
hypotheses. 

Thus there is no loss of generality in assuming that B has an iden­
tity 1. Now we take hÇzW. Let A0 be the *-subalgebra of B generated 
by 1 and h and let A be its closure in B. Since the involution in B is 
continuous by Theorem 3.4 of [5], we see that A is a commutative 
closed *-subalgebra of B. For each s.a. element # £ ^ U , sp(x\B) is 
real and, by Theorem 1.6.11 of [3], sp(x\B)~$p(x\A). Since each 
s.a. element u of A is the limit of s.a. elements of A0l Gelfand theory 
applied to A shows that sp(u\ A) = sp(u\ B) is real. Let 2fll be the space 
of maximal ideals of A. For each ikfESD?, |exp(iA)(Af)| = 1 . Write 
exp(ih) —s+it where s and t are s.a. in A. Then, since s(M) and t(M) 
are real-valued, we obtain 

1 == v(exp(ih)) è max(v($), v(t)) à c max(||s||, ||/||) 

^ (c/2)\\s + it\\ = (c/2)||erp(t*)||. 

Therefore 

(1) ||exp(i*)|| S 2c-\ h<EW. 

Inasmuch as the mapping x—^exp(x) is continuous on B, the rela­
tion (1) persists on the closure of W in B which, by the continuity of 
the involution, lies in H. Now take any w in that closure. Let B0 be 
a maximal commutative *-subalgebra of B containing w and let 5DÎ 
beitsspaceofmaximalideals.Supposethata+&iGsp(w|i5)==sp(w|^o) 
(see Theorem 4.1.3 of [3]) where a> b are real. As w — w*, then also 
a—biÇzSp(w). Choose M\, M* in M such that w(Mi)=*a+bi and 
w(M 2 )=a—hi . Then |exp(iw)(Mi)| =exp(—6) and \exp(iw)(M2)\ 
= exp(&). For any £>0, twÇzffî* Therefore we obtain 

2c""1 g£ v(exp(itw)) è max(exp( — tb)> exp(tb)). 

I t follows that & = 0 so that sp(w) is real. 
I t may be noted that an example of Kakutani given on p. 282 of 

[3] shows that one can have a sequence of elements in a Banach 
algebra B with purely real spectrum approaching an element whose 
spectrum is not entirely real. 

We now turn to Corollary 2. A standard argument (see p. 191 of 
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[3]) shows that v(h) <£c\\h\\ for all h(E:H. Then the involution on B is 
continuous by Theorem 3.4 of [S] so that ||**#|| èc||x*|| | |#| | for all 
xÇzN. By Theorem 4.2.2 of [3], W=H and we may apply Corollary 1. 
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