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There are two very natural notions of equivalence of flows (see 
[l] , [2]) on a manifold. One is the existence of a homeomorphism 
mapping orbits onto orbits, preserving the natural orientation of 
orbits but not necessarily their natural parametrisation. The second 
requires that the homeomorphism alter natural parametrisations by 
at most a positive constant multiple. We call the first relation on 
flows orbit-equivalence and the second flow-equivalence. There are 
obvious localisations of these relations. In general flow-equivalence is 
strictly stronger than orbit-equivalence. However, it is a consequence 
of the theorem of Hartman [5], [ó], [7] and Grobman [3], [4] that 
the local notions of equivalence are the same at elementary (see 
[ l ] , [2]) rest-points. The purpose of this note is to announce a similar 
result for elementary cycles. M. Shub has informed me that he and 
C. Pugh have also obtained this result. 

1. Preliminaries. Let QiRXX—^X be a C1 flow on a C00 manifold 
X. We write <f>x(i) =#'(#) —<t>(tt

 x)> so that, for fixed #EX, #*: R-*X 
is C1 and, for fixed tÇzR, <£': X—>X is a Cl diffeomorphism. Let U be 
open in X. For fixed # £ U let Ix denote the component of {4>^1{U) 
containing 0, and let Du denote (Jxeu IxX{x}. 

Now suppose that \F is a C1 flow on a C00 manifold Y and that A 
and B are subsets of X and Y respectively. We say that A is flow-
equivalent to B (with respect to the given flows) if there exist open 
neighbourhoods U of A and V of B and a homeomorphism h: U—>V 
such that h(A) =B and, for all (t, x)ÇzDu, 

h<t>(t,x) = *(a(t),h(x)), 

where a: R-+R is a multiplication by some positive constant. In this 
case h maps orbit components of <t> in U onto orbit components of SF 
in F, preserving orientation. 

Let vÇzGL(E), where £ is a finite dimensional real normed linear 
space. Let F be the largest invariant subspace of E on which v has no 
complex eigenvalues of modulus 1. We call v\F the hyperbolic part 
of v. 

Recall [8] that we may associate with any hyperbolic linear auto-
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morphism of a ^-dimensional real normed linear space its suspension, 
which is a flow on a (& + l)-dimensional manifold. I t has precisely one 
cycle, corresponding to the unique periodic point 0 of the automor­
phism. 

2. Results. The following is an analogue, for cycles, to the theorem 
of Hartman and Grobman for rest-points: 

THEOREM 1. Let cfrbe a C1 flow on X, and let C be an elementary cycle 
of <t>. For any # £ C , let D be the unique cycle of the suspension of the 
hyperbolic part of T^r, where r is the period of C. Then C is flow-
equivalent to D. 

As corollaries one deduces 

THEOREM 2. Let C and D be elementary cycles of C1 flows. Then C is 
flow-equivalent to D if and only if m(C)—m(D), n(C)~n(D), and 
m"(C)—m-(D) and n-(C)—n~~(P) are even, where m, n, m~ and n~~ 
here denote the numbers of expanding, contracting, real negative expand­
ing and real negative contracting characteristic multipliers. 

and 

THEOREM 3. "Elementary cycles of C1 flows are flow-equivalent if and 
only if they are orbit-equivalent. 

The proof of Theorem 1 reduces, in effect, to a proof that there 
exists, at x, a local cross-section that is invariant under <t>r. By taking 
a suitable chart and using a bump-function we may reduce this to 
the following 

LEMMA 4. Let v.E—tE be a hyperbolic linear automorphism, let 
ƒ: E—*E be a homeomorphism and let f : E-^>R be a linear map. Suppose 
that, for some d^0,f—v and f vanish at 0 and on {x£2£; \\x\\ *zd} and 
are Lipschitz, the former with constant K. Then, if K is sufficiently small, 
there exists a continuous map 0: E-+R such that 0=0f+Ç. 

Subject to the condition 0(0) = 0 , the map 6 is uniquely defined on 
the stable and unstable manifolds of the origin with respect to ƒ. 
Elsewhere, however, it is not unique. In the proof [9] of the lemma an 
explicit map 6 is constructed. 
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