ELEMENTARY CYCLES OF FLOWS ON MANIFOLDS

BY M. C. IRWIN

Communicated by Jurgen Moser, April 14, 1969

There are two very natural notions of equivalence of flows (see [1], [2]) on a manifold. One is the existence of a homeomorphism mapping orbits onto orbits, preserving the natural orientation of orbits but not necessarily their natural parametrisation. The second requires that the homeomorphism alter natural parametrisations by at most a positive constant multiple. We call the first relation on flows orbit-equivalence and the second flow-equivalence. There are obvious localisations of these relations. In general flow-equivalence is strictly stronger than orbit-equivalence. However, it is a consequence of the theorem of Hartman [5], [6], [7] and Grobman [3], [4] that the local notions of equivalence are the same at elementary (see [1], [2]) rest-points. The purpose of this note is to announce a similar result for elementary cycles. M. Shub has informed me that he and C. Pugh have also obtained this result.

1. Preliminaries. Let $\phi: R \times X \to X$ be a C^1 flow on a C^{∞} manifold X. We write $\phi_x(t) = \phi^t(x) = \phi(t, x)$, so that, for fixed $x \in X$, $\phi_x: R \to X$ is C^1 and, for fixed $t \in R$, $\phi^t: X \to X$ is a C^1 diffeomorphism. Let U be open in X. For fixed $x \in U$ let I_x denote the component of $(\phi_x)^{-1}(U)$ containing 0, and let D_U denote $\bigcup_{x \in U} I_x \times \{x\}$.

Now suppose that Ψ is a C^1 flow on a C^∞ manifold Y and that A and B are subsets of X and Y respectively. We say that A is flow-equivalent to B (with respect to the given flows) if there exist open neighbourhoods U of A and V of B and a homeomorphism $h: U \rightarrow V$ such that h(A) = B and, for all $(t, x) \in D_U$,

$$h\phi(t, x) = \Psi(\alpha(t), h(x)),$$

where $\alpha: R \to R$ is a multiplication by some positive constant. In this case h maps orbit components of ϕ in U onto orbit components of Ψ in V, preserving orientation.

Let $\nu \in GL(E)$, where E is a finite dimensional real normed linear space. Let F be the largest invariant subspace of E on which ν has no complex eigenvalues of modulus 1. We call $\nu \mid F$ the hyperbolic part of ν .

Recall [8] that we may associate with any hyperbolic linear auto-

morphism of a k-dimensional real normed linear space its *suspension*, which is a flow on a (k+1)-dimensional manifold. It has precisely one cycle, corresponding to the unique periodic point 0 of the automorphism.

2. **Results.** The following is an analogue, for cycles, to the theorem of Hartman and Grobman for rest-points:

THEOREM 1. Let ϕ be a C^1 flow on X, and let C be an elementary cycle of ϕ . For any $x \in C$, let D be the unique cycle of the suspension of the hyperbolic part of $T_x\phi^{\tau}$, where τ is the period of C. Then C is flow-equivalent to D.

As corollaries one deduces

THEOREM 2. Let C and D be elementary cycles of C^1 flows. Then C is flow-equivalent to D if and only if m(C) = m(D), n(C) = n(D), and $m^-(C) - m^-(D)$ and $n^-(C) - n^-(D)$ are even, where m, n, m^- and n^- here denote the numbers of expanding, contracting, real negative expanding and real negative contracting characteristic multipliers.

and

THEOREM 3. Elementary cycles of C^1 flows are flow-equivalent if and only if they are orbit-equivalent.

The proof of Theorem 1 reduces, in effect, to a proof that there exists, at x, a local cross-section that is invariant under ϕ^{τ} . By taking a suitable chart and using a bump-function we may reduce this to the following

LEMMA 4. Let $v: E \rightarrow E$ be a hyperbolic linear automorphism, let $f: E \rightarrow E$ be a homeomorphism and let $\zeta: E \rightarrow R$ be a linear map. Suppose that, for some $d \ge 0$, f - v and ζ vanish at 0 and on $\{x \in E; ||x|| \ge d\}$ and are Lipschitz, the former with constant κ . Then, if κ is sufficiently small, there exists a continuous map $\theta: E \rightarrow R$ such that $\theta = \theta f + \zeta$.

Subject to the condition $\theta(0) = 0$, the map θ is uniquely defined on the stable and unstable manifolds of the origin with respect to f. Elsewhere, however, it is not unique. In the proof [9] of the lemma an explicit map θ is constructed.

REFERENCES

- 1. R. Abraham, Foundations of mechanics, Benjamin, New York, 1967.
- 2. R. Abraham and J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967.

- 3. D. M. Grobman, Homeomorphisms of systems of differential equations, Dokl. Akad. Nauk SSSR 128 (1959), 880-881. (Russian)
- 4. ——, Topological classification of the neighborhood of a singular point in n-dimensional space, Mat. Sb. 56 (98) (1962), 77-94. (Russian)
- 5. P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc. 11 (1960), 610-620.
- 6. —, On the local linearisation of differential equations, Proc. Amer. Math. Soc. 14 (1963), 568-573.
 - 7. ----, Ordinary differential equations, Wiley, New York, 1964.
 - 8. S. Smale, Differentiable dynamical systems, Bull. Amer. Soc. 73 (1967), 747-817.
 - 9. M. C. Irwin, A classification of elementary cycles, Topology (to appear).

University of Liverpool, Liverpool, England