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This paper gives an extension (Proposition 3) of Theorem C of 
H. Wu's paper [4], as well as a few other results. The terminology 
will be that of [4]. 

If M and N are complex manifolds A(M, N) will denote the set 
of holomorphic mappings between M and N. I t is a topological space 
under the topology of uniform convergence on compact subsets of M. 
If fi is a sequence in A(M, N) and g is in A(M, N) then ƒ•—»£ will 
mean tha t t h e / / s converge to g in this topology. A pair (N, d), where 
N is a complex manifold and d is a distance on N, will be called tight 
iff A (My N) is equicontinuous with respect to d for all complex mani­
folds M. In fact (N, d) is tight iff A(Bn, N) is equicontinuous with 
respect to d, where Bn here denotes the unit ball in Cw. For details 
see Part I of [4]. 

Our basic lemma, interesting for its own sake, is 

PROPOSITION 1. Let M be a connected complex manifold, U an open 
subset of M, and (N, d) be tight. ForfEA (M, N) define iv(f) EA ( U, N) 
to be the restriction off to U. Then iu is a homeomorphism of A (M, N) 
intoA(U,N). 

PROOF, iu is one-to-one because U is open in M. lîfi-^g in A (My N) 
it is clear that iu(fi)-^iu(g)' Thus iu is continuous, and it remains 
only to show that iu(fi)—*iu(g) in A(Uy N) implies that f4—>g in 
A(M, N). 

Suppose iu(fi)-*iu(g) in A(U, N). Let ^1= { VCM: V open in M 
and iv(fi)—>iv(g) in A(V, N)}. Partially order at by inclusion. If 
V1C.V2C.VzC.''' is a totally ordered chain in 01, it is clear that 
V = \JVj is a member of 01. Since Z7£0l, 01 is not empty, so Zorn's 
Lemma implies that 01 contains maximal elements. Let U0 be one 
such. We will show that Z70 = M. 

If not, dUQ = Vo—ÜQ is not empty. Let xCdUQ and e>0 . Since N 
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is tight there is a neighborhood, V, of x such that y(EV implies 
d(h(x), h(y))<e/3 for all holomorphic mappings h: M—*N. Pick such 
a 3>£FP\£/0 and pick i0 such that i>i0 implies d(fi(y), g(y))<e/3. 
Then i>io implies that 

d(fi(x), g(x)) ^ d(fi(x),fi(y)) + d(fi(y), g(y)) + d(g(y), g(x)) < e. 

This shows that fi(x)—>g(x). 
Let B be a taut (see [4, p. 199]) neighborhood of g(x) in N. Since 

M is tight and fi(x)—>g(x) there is a connected neighborhood, W, of 
x in M such that /*(W0C-B for large i. Now the set of holomorphic 
mappings from W to By A(W, B) is a normal family [4, p. 197]. If 
{i(j)} is any subsequence if Z + then fiu)(x)—>g(x) and it follows that 
there is a subsequence {j(s)} of Z+ such that iw(fiu(*)))—*h> where h 
is a member of A ( W, J3). But TFH Z70 is open, so the h must coincide 
with g on Wr\Uo, and hence ft = iV(g). Thus iw(fi)-*iw{g) and 
iTTui70(/»)"~HVuüro(g)» so UQ is not maximal, a contradiction. Hence 
Uo = M3.ndfi-*ginA(M,N). Q.E.D. 

Proposition 1 is not true for general complex manifolds. Let 
M = N=Cy the complex plane, and U = B1

i the open unit disk. For n 
a positive integer, define fn(z) = (l — l/n)z+(l/n)zn. fn approaches 
the identity uniformly on compact subsets of Bl, but fn{z)—»<» for 

1*1 >i. 
COROLLARY 2. Let (M, d) be a tight manifold and UQM be open. 

Suppose f : M—>M is holomorphic and f or some subsequence, {i(s)} of 
Z+, iij(/*(j,))—>idu. Then f is an automorphism of M. 

PROOF. By Proposition 1, /i(s>—>id on M. This gives the conclusion 
by repeating verbatim the argument at the end of the proof of Theo­
rem C [4, p. 208]. Q.E.D. 

PROPOSITION 3. Let M be a tight manifold with respect to some distance 
dy pGM, and f: M—*M holomorphic with f (p) =p. Then 

(i) |de t df9\£l, 
(ii) dfp is the identity matrix iff f is the identity on M, 
(iii) | det dfp\ = 1 iff ƒ is an automorphism of M. 

PROOF. Let W be a taut [4, p. 199] neighborhood of p which is 
contained in some coordinate neighborhood of p. By equicontinuity 
there is a neighborhood, [7, of p in M such that g(U)QW for any 
holomorphic mapping g: M-+M. We may suppose in fact that U is 
an open ball in the coordinates about p. Now (i), (ii) and the <= part 
of (iii) are proved exactly as in the proof of Theorem C [4, pp. 205, 
206]. 

For the remainder of (iii) it follows as on p. 207 of [4] that there 



48 D. A. EISENMAN 

is a subsequence, {i(s)} of Z + such that iu(fiM)—*idu* Now Corollary 2 
shows ƒ is an automorphism of M. Q.E.D. 

PROPOSITION 4. Let M be a tight complex manifold, U be open and 
relatively compact in M, ƒ : M—»M holomorphic, and iu(f) an automor­
phism of U. Then ƒ is an automorphism of M. 

PROOF. M is tight iff M is hyperbolic, in the sense of Kobayashi 
[3, p. 465]. This is shown in [l , Part I I : 3.8]. For r > 0 , let 

Ur = {xG U:K(X,ÔU) > r}. 

(Here K is the Kobayashi distance on M.) If x G Ur, x=f(y) for some 
yEU, and jc(y, U)^K(X, f(dU))^K(x, dU)>r. Thus UrCf(Ur), and 
by [l , Part I I I : 1.5], f(Ur) = Ur and iur(f) is an automorphism of £/r. 

We can choose a subsequence of Z + , ( i (m)} , and points ym in Ur 

such that ic(fi(m)(ym), ym)<l/m for each m. Since Z7r is compact in U 
we may pass to a subsequence and assume ym—>p, where p is some 
point in Z7r. 

Now for x G Ur, x is in U8 for some 5 > 0, and by the argument in the 
first paragraph of this proof, ƒ*(#)£ Z7, for all positive integers i. 
Since 77* is compact in U, {fiM(x)} is relatively compact in U. Since 
/*(m) is an equicontinuous family with respect to K, it follows from the 
Ascoli Theorem that there is a subsequence of {i(m)}, which we shall 
again denote by {i(m)}, such that iu(fiim))—>g in U, where g is a holo­
morphic mapping from U to itself, and g(p)=zp' Since iürif1) is an 
automorphism of Ur for each r > 0 and each positive integer i, it 
follows from the relative compactness of Ur in U that g(Ur) = Ur for 
each r > 0 , and [l , Part I I I : 1.5] shows that g is an automorphism of 
Ur for each r > 0. Hence g is an automorphism of U. 

By Proposition 3, |de t dgp | = 1 . From this and the argument on 
p. 207 of [4] it follows that for some subsequence, {k(s)}, of Z+gk(s) 
—>idcr- I t is now easily seen that for some subsequence of Z + , {i(s)}, 
iu(fi(8))-*idut and Corollary 2 shows that ƒ is an automorphism of M. 
Q.E.D. 
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