
QUASI-SUBORDINATION AND COEFFICIENT 
CONJECTURES1 

BY M. S. ROBERTSON 

Abstract. The concepts of subordination and majorization of 
two analytic functions are unified by regarding them as special 
cases of the idea of quasi-subordination. Six conjectures are dis­
cussed in connection with quasi-subordination, univalent and 
multivalent functions. Evidence is given to support the truth of 
these conjectures. 

1. Subordination. Let D be a simply connected domain on the 
z-sphere and let w = F(z) be meromorphic on D and map D onto 
D(F) the Riemann domain over the w-sphere. 

Let w =jf(3) be also meromorphic in D. 
DEFINITION. f(z) is called subordinate to F(z) in Z), with center z0 

in £>, if f(zo) = F(z0) and the values of ƒ(z) in Z>, determined by 
analytical continuation from ZQ, are situated in D(F). 

The Riemann domain D(f) is extended (but is not necessarily 
schlicht) over D(F). 

We write f(z)-<F(z) in D. 
There is no loss in generality in assuming D to be the unit disc 
E{z\ \Z\ < l } and so = 0. Under these assumptions there exists a 
function w(z) regular in \z\ <1 with \w(z)\ ^ \z\ <1 such that 
f(z) = F{w(z)}(\z\<l). 

In our present discussion we shall be concerned with the case that 
f(z) and F(z) are both regular in F. Frequently we shall take /(O) 
= /?(())= 0. 

2. Majorization. If f{z) and F{z) are both regular in E, and if 
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\f(z) I ^ J F(z) I in E, then there exists a bounded function #(0) regular 
in E, | <t>(z) | S1 in E, for which 

/ (*)*M(*).F(s) ( z G E ) , 

In this case we say ƒ (0) is majorized by F(0) and we write f(z)<giF(z). 
The concepts of subordination and majorization often play dual 

or related roles in many theorems involving analytic functions. We 
mention a few examples. 

EXAMPLE 1. Let / ( s ) = ]Cf a ^ - ^ + X ^ 0 0 Anz
n~F(z), F'(0) = 1, 

2 £ £ , where F(z) is typically-real in E. This implies that F(z) is real 
on the real axis, the coefficients An are real, and, for 0 £ E , F(z) takes 
on real values only for real values of 0. ImF(z)>0 whenever lmz>0> 
zEE. 

W. Rogosinski [29] showed that when F(z) is typically-real in E 
then \an\ un, n = l, 2, • • • for the coefficients an of ƒ(2). Recently 
T. H. MacGregor [18] proved the same result with subordination of 
f by F replaced by majorization | f(z) | ^ | F(z) | in E. 

EXAMPLE 2. Let ƒ ( 0 ) ^ ( 0 ) , ƒ (0) = F(0) = 0, F(z) univalent in E, i.e., 
F(z2)y^F(z1) for 02^21, 0X and 02 in E. Let arg / ' ( 0 ) = a r g F'(0). 
M. Biernacki [2] has shown that if ƒ(z)^F(z) there is a number 
i ? o è l / 4 so that for [0) <i? o | / (0) | < | F(z)\. The estimate for R0 was 
improved by G. M. Golusin [8] who obtained 0 . 3 5 < i ? 0 g ( 3 - V5) /2 
= .381 • • • .F ina l lyShahTao-sh ing[30]showedtha t i? 0 =(3-VS) /2 . 
G. M. Golusin [7] also showed that if f(z) is univalent in E then 
R0 = 0.39 • • • where 

log((l + R0)/(l - JRo)) + 2 arc tan R0 = x/2. 

Z. Lewandowski [13] has proved a converse theorem. I f / a n d F a r e 
regular in E, /(O) = F(0) = 0 , F univalent in E, and if | / | ^ | F\ in E 
then for (0) <i?i f-<F where .21<^x<.30 . If arg ƒ (0) =a rg F ' (0 )>0 
and F is starlike then J f t^ i î* where £ * 3 + # * 2 + 3 i ? * - l ==0 and 
.29<.R*<.30. 

EXAMPLE 3. Let {/„}, w = l, 2, • • • be a sequence of positive 
numbers with lim^*, tn = t0 = 0. Let F(0, tn) be a sequence of functions 
O = 0, 1, • • • ) regular in E, F(0, O = 0 , F(z, t0) = F(z} 0) =ƒ(«). Let 
F(0, tn)-<f(z) i n E . Let 

F(2i) = l i m 

exist (zG-E). Then Re{ F(z)/zf(z)} gO («GE, / '(s)5*0). The author 
[24] proved this theorem with the hypothesis tha t / (z ) is univalent 
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in E since the interesting applications are in this case. However, the 
theorem extends easily to all ƒ(z) ^cons tan t function, f(z) regular 
i n £ . 

To illustrate one simple application, let 0<tn^ly f(z) regular and 
nonconstant in £ . Let (1 —tn) • f(z) = F(z, tn)-<f{z) in £ ; then 

F(z) = hm = - ƒ(«) 
n-*«> L tn J 

and we conclude that Re{f(z)/zf(z)} ^ 0 . Equality can only occur 
when f(z)/zf'(z)=ai, a real. But f(z)/zf'(z) = l/q+ • • • for ƒ(*) 
= aqz

q+ • • • , g ^ l . Hence a = 0. Then ƒ (s) = constant. We conclude 
that Re{zf(z)/f(z)}>0 in E. If also ƒ (0)5*0 we have the familiar 
test that ƒ (z) be univalent and starlike in E. 

To illustrate another application of this theorem, suppose that 
f(z) = ]Ci°fln3n is regular and univalent in E and that the de la Vallée 
Poussin polynomials Vn(z) approximating/(s) are subordinate to f(z), 
P»(*W(«) in JE, w = l , 2, . • • 

» *(* - 1) • • . (» - £ + 1) 

ÊÏ (n+l)(n + 2) •••(» + *) 
We take tn = l/(n + l), F(z, tn)*=Vn(z) and compute F(z) to be 

- [**ƒ'(*)+«f(*)l so that Re{F(s)/sf(*)} £ 0 leads to 

R e { l + *ƒ'(«)/ƒ(*)} è 0 (2 G E). 

We conclude that f(z) must be convex in E. Previously Pólya and 
Schoenberg [20] had proved the converse to this theorem. Thus the 
necessary and sufficient condition that a function f(z), regular and 
univalent in E, should map £ on a convex domain is that Vn(z)-<f(z), 
w = l , 2 , . . . . 

Z. Lewandowski [14] has also extended this theorem replacing 
subordination of F(z, tn) by f(z) by majorization | F(z, tn) | ^ \f(z) \ 
and obtains a conclusion Re { F(z)/f(z)} ^ 0. 

The three examples I have presented illustrate the interrelation of 
the concepts of subordination and majorization. In order to at tempt 
a unification of the two concepts I introduce the concept of quasi-
subordination. 

DEFINITION. Let f(z) = X)o° #n3n, F(z) = X^° Anz
n be analytic in 

| z | <R. Let <j>(z) be a function analytic and bounded for |z | < JR , 
10(2) I rgl, such that f(z)/<j>(z) is regular and subordinate to F(z) in 
\z\ <R. Then ƒ (z) is said to be quasi-subordinate to F(z) in |*| <R 
relative to <£(s). We write f(z)-<qF(z) and f'(z)=<l>(z)F(w(z)), \w(z)\ 
£\z\ <R. 
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Two special cases of quasi-subordination are of particular interest. 
(1) If 0 ( s ) - l then f(z)<F(z), \z\ <R. 
(2) If w(z)zzz, then jf«F(s) for \z\ <R. In what follows, we shall 

assume JR = 1. Note that iîf-<qF(z) then ao=<jf>(0)-4<> since/(O)/0(O) 
»F(0). 

I turn now to the problem of relating the relative magnitudes of 
the coefficients an and An when f-<qF. 

Hf(z) = ]££ anz
n-<F(z) = X)o° 4̂n2n (ordinary subordination). J. E. 

Littlewood [IS] showed that \ax\ **\Ai\ and \a2\ <JMax{|i4i|, | ^ 2 | } 
and the bounds are sharp. On the other hand, iîf-<qF then | a\\ Hk\A\\ 
again, but |a2| ^(5/4)Max{ |^4i|, \A*\ ) . The constant 5/4 is best 
possible [27] with equality when 4̂i== 4̂2 and f(z) = ((l+2z)/(2+z)) 
.ƒ?(*). Here | / | g | F| sof<qFmE. If/-<F,p>O f 

ƒ
• 2 T / • 2T 

| /(re*) |'<0 g I | i?(re*) |»d», 0 g r < 1, 
o Jo 

and the same is true when f-<qF. W. Rogosinski [29] showed that if 
f •< F then 

È I ^ l 2 ^ Ê I ^*l2, n - 1, 2, - • • [flo - M 

The same inequalities hold [27] if f-<qFm E. Also if F(0)^0, and in 
the neighborhood of z = 0 the functions [/(s)/<£(*) ] l / 2 , [ ̂ (*) ]1 /2 (which 
may not be regular in E) have the expansions 

r ƒ -u/2 oo oo 

— « Z ****, [F]1/2 = 2 **** ( I « I small) 
L </» J o o 

then 

0 0 

This basic inequality permits us to obtain bounds on an when 
f = £ i " a„Z»K,F= £ ; 4̂»2B, Ao^O. We get |o„| g S E S IB»!*, « 
= 1, 2, • • • where [F(2)]x'2= £ 0 " £*z*, £ 0 ^ 0 , near s = 0. 

The proof is not difficult: 

ƒ(*)/*(«) = F{W(z)}, |w(«)| g | «| < 1 . 

Let \i/4>]m= Zo" bkz\ bo = B0?*0, near 2 = 0. 

f(2) = * (« ) <?")' 
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For small r, 

1 r f(z) \ r ( ™ y dz 
an = I dz = I 0(2) ( V bnz

n ) 
|»|«r 2 ' " Z7TW \z 

for ail r < 1, 
Sn+X 

where we have used the fact that 0(0) = 0. For z = rei9, 0 ^ r < 1, 

j[ /• 2ir I n—1 I 2 J n—1 

| 0.1 ^V~nT EMM ^ = - — r E | ^ | 2 ^ , 0 £ f < l , 
27Tfn~1 J o I M I ^W""X *-0 

or 

0 0 

In particular, if g(z) is univalent in E and g(z)~ X)* £n2"> CIT^O, 

we may take E(;s) above to be g(z)/z and if f(z)*<qg(z) in E, then 
f-<qF=g/z. Then [g(s2)]1/2 = Z X i ^ - i * 2 * - 1 is univalent in E, and 

[FWl^-k^/sl^^Sr*»-!»*-1. Thus k i ^ E r 1 ! ^ ) 2 be-
when 

ent in 

comes J a n | ^ ]C*-i I ^2&-i|2. Thus the problem of bounding | a„ 
ƒ(*) - lli dnZn-<qg(z) = 2 j r c»2n in E, and when g(s) is univai 
E, becomes one of determining the sharp upper bound on X X 1 | <fe*-i12 

for the associated univalent function [g(s2)]1/2= So* d2*+is2*+1. 
Let us return to the subordination situation ƒ(z) = ]F)" anz

n"<F(z) 
= S r -4nZn in E, with F(z) univalent in E, i.e., F^^Ffa) for is^Si 
in E. There are three long-standing and still unproved conjectures 
regarding the coefficients of A n of the power series for F(z). 

CONJECTURE I (BIEBERBACH, 1916). If F(z)~ ]T)f Anz
n in £ , then 

\An\ ^w |^4 i | , n — 2, 3, • • • . In 1916 the conjecture was proved to 
be true for n = 2 by Bieberbach [l ] ; in 1923 for n = 3 by Löwner [17], 
and then after a very long gap, in 1955 for n = 4 by Garabedian and 
Schiffer [ó]. Recently Pederson [19] has succeeded in proving the 
conjecture for w = 6. I t is not known to be true for w = 5 and n > 6 , 
except that for each F(z) there is an N0(F) so that | -4 n | âw|^4i | for 
n>N0(F), an important result due to W. Hayman [ l l ] . 

The conjecture is known to be true for all n if F(z) satisfies any one 
of the following additional conditions: 

(1) F(z) = X r Anz
n has An all real (Dieudonné [é] and Rogosinski 

[28]. 
(2) F(z) maps E on a spirallike domain (Spaëek [3l]). 
(3) F(Z) maps E on a domain D starlike with respect to a point WQ 

exterior to D (N. G. de Bruijn [3]). 
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(4) F(z) is close-to-convex in £ (M. O. Reade [2l]). 
CONJECTURE II (ROBERTSON, 1936). If F= Xi°° Anz

n is regular and 
univalent in £ , and if [F(^2)]1 /2= Xi°° D2k-iZ2k~1 then 

(1) £ \ D*~i\* £ n\ At\ , n « 2 , 3 , - . . , AX = D\. 

Since \D%\ lsk\Di\ follows from \A%\ 2S2|i4i|, the inequality (1) is 
certainly true for w = 2 (and trivially for n = 1). However, since | D&\ 
can be as large as (e~"2/3+|) • | £>i| > | Di | it is somewhat surprising to 
find that (1) is still true for n = 3. The author [22] proved this in 1936, 
using the Löwner variational method of attack. Although three 
decades have passed it is still not known if (1) is true for larger values 
of ny except that only recently S. Friedland [5] succeeded in estab­
lishing (1) in the case w = 4. The truth of Conjecture II would imply 
the truth of the Bieberbach Conjecture I. There is additional evidence 
that (1) may be true. For example, if F(z) is starlike or spirallike then 
| -£>2fc-i| ^ | Ai\1/2 for all k so that (1) is true for all n in this case. More­
over, limw^oo |Z>2ft~i| =ce exists and a < | j 9 i | except when F(z) 
= z(l— es)~2, |e | = 1 , a result due to W. Hayman [ l l ] . One can show 
from this that the conjecture (1) is true for n>No(F). 

These two conjectures lead to two others involving subordination 
and quasi-subordination. 

CONJECTURE I I I (ROGOSINSKI, 1943). If ƒ(*)= J2i anz
n-<F(z) 

= £ j ° Anz
n in E where ƒ and F are regular in E and F is univalent in 

£ , then | a n | ^ # | - 4 i | , w = l, 2, • • • . The cases ^ = 1, 2 were shown by 
J. E. Littlewood [15]. The case n==3 now follows, since we have 
shown above that |a3 | g |Z>i| 2+\Dz\

 2+|Z>5 | 2^3|Z>i | 2 = 3|^4i|, not 
only in the subordination case but when f-<qF. Similarly, the case 
# = 4 also follows from Friedland's result, mentioned earlier. W. 
Rogosinski [29] also showed that the conjecture was true for all n if 
F has real coefficients, or if F has complex coefficients and is starlike. 
The author [25] extended this result to the following. If F(z) is close-
to-convex in E, then for all n\an\ Ûn\ A\\ with equality only for the 
Koebe function for any n> 1. 

These three conjectures have remained unproven for long periods 
of time, for 52, 32 and 25 years respectively, so at my age it would 
probably do no harm to add another one here. 

CONJECTURE IV (ROBERTSON, 1968). Let f(z) = J2i anz
n<qF{z) 

= X^r Anz
n in E where F{z) is univalent in E, then | a n | ^ « | ^ 4 i | , n 

= 1, 2, 3, • • • . Conjecture IV is true [27] for n = 1, 2, 3, 4 and for all 
sufficiently large values of n>tio(F). I t is true for all n if the coeffi­
cients An are all real (an may be complex) [27]. I t is true for all n if 
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F(z) is starlike or spirallike in E [27]. 
Conjecture I I I , if true, implies the truth of the Bieberbach Con­

jecture I, since F(z) is subordinate to itself. Conjecture IV, if true, 
implies the truth of Conjectures I and I I I , and is true if Conjecture 
II is true. Thus all of these conjectures are true if Conjecture II is 
true, namely, if X)*°-i Dik-iZ2k~~l represents a univalent function 
regular in E then 

| # i | 2 + i£>3|2+ • • • + \ D2n^S n\ D1\\ 

At this point I should like to mention briefly two other coefficient 
conjectures: 

1. A. W. Goodman (1948) [9] conjectured that if F(z)=> £ ) " Anz
n 

be regular and ^-valent in £ , i.e., if F takes on a value £-times and no 
value more than £-times in E, then for n>p 

(2) U » S £ ~ Ak\ . 
£[ (£ + * ) ! ( £ - * ) ! ( » - * - l)!(**2-£2) ' ' 

For p = l this reduces to \An\ ^n\Ai\. 
The conjecture is known to be true for a few special subclasses but 

unfortunately very little is known yet in this direction. Goodman and 
Robertson [lO] showed that (2) holds for all n>p whenever f(z) is 
^-valently starlike in E and the coefficients Ak are all real. If the 
coefficients are complex the author [23 ] proved that it is true for each 
n in the case £ = 2. 

Recently A. E. Livingston [16] has shown that (2) is true for all n 
if F(z) has the form F{z) =Ap-.iZp~l+Apz

p+ • • -, | z | < 1 , and F(z) is 
^-valently close-to-convex in E. This is a great step forward in con­
nection with an extremely difficult problem. 

2. Another set of coefficient inequalities in the univalent (£ = 1) 
case is the set 

(3) | « | An\ -~m\ Am\ | S \n*-rn*\ • | Ax\ , 

where F(z) = ]jT)* Anz
n is regular and univalent in E, n and m being 

positive integers. 
The inequality for m — n — 1 gives 

n\An\ ^ (n - 1)| 4n. i l + (In - l ) | i4 x | 

from which 

U n | ûn\Ax\ 

follows by induction. The author [26] has proved that the inequalities 
(3) hold for each m, n whenever F{z) maps E onto a domain comprised 

4n.il
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of parallel line segments, one segment on each line. (3) is also true 
[26] if F is merely close-to-convex in E provided n-~rn is even. Both 
classes contain the Koebe function. (3) is also true [26] for # = 3, 
m = 2 for close-to-convex functions. In this case 131 4̂.31 —21 -4a| | 
g ( 3 2 —22)- |^4i| =5|^4i | . However, (3) cannot be true in general for 
all F regular and univalent in E. J. A. Jenkins [12] showed recently 
that the sharp upper bound for 3\AZ\ —2|-42| is (5.02 • • • )*|-4i| 
when F(z) is univalent in £ . It is still an open question whether (3) 
is true for all close-to-convex functions if n—m is not an even integer. 
The answer is an affirmative one if every starlike function f(z) 
= 0 + ^ 3 * bnzn, \z\ < 1 , has coefficients which satisfy |2&„—62-èn~i| 
2g2, » = 1, 2, 3, • • • (&o = 0). These inequalities are true at least for 
n = l, 2 and 3. 
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