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Let R be a finite open Riemann surface; that is, R is obtained by
deleting from a compact Riemann surface a finite number of disjoint
closed discs, each of which has an analytic simple closed curve as
boundary. Let 4 (R) be the algebra of functions which are continuous
on the closure of R and analytic on R; A(R) is a Banach space under
the supremum norm. An element f of A(R) will be called inner if
| f| =1 on the boundary of R. The following theorem extends the
author’s earlier result, where R was the unit disc in the complex plane

[3].
THEOREM. The closed convex hull of the inner functions in A(R) s
the unit ball of A(R).

The proof requires two lemmas whose proofs will be given after the
proof of the theorem.

LEMMA 1. Let 21, - - -, 35 be distinct points of R and let b be an
analytic function on R bounded by 1. Then there is an inner function f
in A(R) with f(z;) =h(z;) for j=1, - - -, N.

LEMMA 2. Let E be a compact subset of the boundary of R of zero
harmonic measure and let p be a positive regular Borel measure on E.
If g is a continuous function on E of unit modulus, then there is a se-
quence { f,.} of inner functions in A(R) such that

(i) fn converges to g a.e.u and

(ii) fn converges uniformly to one on compact subsets of R.

PROOF OF THE THEOREM. Let Q be the closed convex hull of the
inner functions in 4 (R). By the basic separation theorem [2, V.2.10]
if Q were not equal to the unit ball of 4 (R), there would be a measure
A\ which strictly separated Q from some element of the unit ball of
A(R). By [1, Corollary 5] the set of linear functionals on 4 (R) which
attain their norm at some element of the unit ball of 4(R) is dense
in the dual space of 4(R). Hence, it suffices to prove this: if X is a
measure on B, the boundary of R, with ||A|| =1 =ffd\, some fEA(R),
]If” =1, then sup {Re Jaan: qEQ} =1.

Such a measure A has the form

d\ = fgdm + f dp
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where m is harmonic measure for some fixed point p in R, p is non-
negative and singular with respect to m, g is nonnegative, and the
closed support of A lies in the set where f has unit modulus. By choos-
ing a sufficiently large compact subset of the support of u we may
also assume that the support of p is compact and, of course, has zero
m-measure.

If 2ER let P.,dm be the harmonic measure for z on B. It is easy to
see that the linear span of the set {P,:3ER} is dense in L!(B, m).
Hence, given €>0, there are points 2, + « -, 2y in R and constants
a, - - -, ey with || 23X, ¢;,P;—gf|| <e, where we have written P; for
P... Thus 0= fgdm = [ffgdm <Re( 30, cf () +e.

By Lemma 1 there is an inner function I in 4(R) with I(z;) =f(z;)
for j=1, ..., N. By Lemma 2, there is a sequence {f,,} of inner
functions in A(R) with f,—If a.e.u and f.(z;)—1 for j=1, - - -, N.
Let h,=1If,; then h, is an inner function in 4A(R) for each =, h,(2;)
—f(2;) for j=1, - - -+, N and k,—f a.e.u. Hence,

Re f had) Re( f hnfgdm) + Re( f h,,fdy)
Re( f h,.( icip.) dm) —et Re( f h,,f’du>
= Re< i c.-h,,(z.-)) — et Re( f h,j'dy)

gfgdm—36+fdn—e=1—4e

v

for n sufficiently large. This establishes the theorem.

ProOF OF LEMMA 1. This a result of Heins [4, p. 571].

PrOOF OF LEMMA 2. By a theorem of Stout [7, Theorem IV. 1]
there are three inner functions in 4 (R), say ki, ke, and ks, which sepa-
rate the points of the closure of R and whose differentials have no
common zero on R. k;(E) is a compact subset of the unit circle of arc
length zero for 1=1, 2, 3. Let H embed R in the unit three-polydisc
by H(z) = (h(z), ka2(2), ks(2)), and let F=H(E). Since F is a compact
subset of %.(E) Xha(E) X hs(E), it is a peak-interpolation set for the
polydisc algebra [6, Theorem 4.1]. Choose a function G in the poly-
disc algebra which is bounded by one and satisfies G(H(2)) =g(z) for
zEE. Given >0 there are by Rudin’s theorem [5, see final Remark]
unimodular functions Uy, - - -, Us in the polydisc algebra and posi-
tive numbers Ay, -+ - -, \x which sum to 1 such that || 2_¥\;U;— G| <e.
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Let V;=U;oH. Then V; is an inner function in 4A(R) and
[| >°¥N\;V;—g||le <e. This implies that there are inner functions f, in
A(R) such that [f,gdu—1. (We are assuming that “p.ll =1; this in-
volves no loss of generality.) Hence

flfn—-glzdu=f ]f,,]2+f [gl”du—ZReff,,gdy

=2-2 Reff,,gdy-—>0.

Let z,&R; by Lemma 1 there is an inner function I in 4(R) with
I(z0) =0. By the above we can find inner functions f, in 4(R) with
fa converging in L2(u) to ITg. Thus If, is inner and in 4 (R) for each #
and If, converges to g in L2?(u) and vanishes at 2,. Finally, choose a
sequence of numbers {8,} with 0<B,<1 and B,—1. For each # there
is an inner function g, in 4 (R) with

(i) gn(20)=0 and

(ii) the L2(u) distance from g, to (g—B.)(1 —B.g)~! is less than
(1 "'ﬁn) %

If we put fo=(g.+8.) (1 +B.gs)"Y, then f, is in A(R), is inner, has the
value B, at 2o, and finally, the L?(u) distance from g to f, is no more
than 2(1—@,). Since the f, are bounded by 1 and converge to 1 at an
interior point of R, they must converge uniformly to 1 on compact
subsets of R. A subsequence converges a.e.u to g.
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