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Introduction. A Galois theory for purely inseparable exponent one 
field extensions was developed by N. Jacobson [2] in 1944. He ac­
complished this by characterizing the finite dimensional subalgebras 
Derk(K) of Der(K), where Der(K) is the Lie algebra of derivations 
on K, k is a subfield of K, and Der*(i£) is the subalgebra of Der(ÜT) 
consisting of those derivations that are zero on k. I t was conjectured 
that higher derivations might provide an extension of the theory to 
field extensions of higher exponent. The purpose of this note is to 
describe such an extension. The author believes that the exponent 
two case is of sufficient interest to justify its presentation before the 
general exponent N case is developed. The problem of extending 
the theory to exponent N appears to be nontrivial ; the author's efforts 
in this area thus far have been unsuccessful. 

Let K be a field of characteristic p^O or 2 and let HP{K) denote 
the set of all higher derivations of K having length p; that is, se­
quences of additive mappings (di) of K into itself such that for all x 
and y in K and w = 0, 1, • • • , p: dn(xy) = ^{di(x)dj(y)\i+j = n} 
and d0 is the identity mapping on K. HP(K) is a group under (di)(ei) 
= (ƒ•) where fi=y£2{djen\j+n = i}. HP(K) is also closed under a 
type of scalar multiplication by elements of K; this is defined by 
a(di) = {a{di) where a*VZ»= (a*)udi and aÇzK. If & is a subfield of K, 
Hl(K) will denote the subset of those (di) in HP(K) with the property 
that di restricted to k is zero for i = 1, 2, • • • , p, Hl(K) is a subgroup 
of HP(K) and is closed under scalar multiplication by elements of K. 
In the higher derivation setting, Jacobson's result was the character­
ization of the finitely X-generated subgroups H\(K) of Hl(K). 

In this note we give an intrinsic characterization of those subgroups 
H\{K) of Hl(K) having the property that they are finitely ÜC-gener-
ated ; that is, there is a finite subset 5 of Hv

h(K) such that the minimal 
subgroup of Hp(K) containing S and closed under scalar multiplica­
tion is Hl(K). The result can then be used to provide a Galois type 
correspondence between these subgroups of HP{K) and subfields k of 
K satisfying: [i£:&]< oo, exponent of K/k = 2, and K is the tensor 
product of simple extensions of k. Only sketches of proofs are given. 
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1. Subgroups of HP(K) closed under scalar multiplication. In this 
section we consider those subgroups G of HP(K) which have the 
property that (a*di) G G whenever (d,) G G and aÇzK. Also the groups 
considered are required to contain elements (di) with d i^O. 

LEMMA 1. Let {Zi} denote the upper central series f or G. There is a 
natural injection of the group Zi/Zi-\ into Der(i£), the algebra of deriva­
tions on K, for each i. 

PROOF. Z»= {(dy)GG|di = d2 = • • • = dP_» = 0 } . The mapping from 
Zi/Zi-i into Der(ÜT) is (dy)Z»_i—>dp-i+i. 

We identify Zi/Z»_i with its image in Der(K) under the mapping 
given above. 

LEMMA 2. If {Z t} is the upper central series f or G, then Zp/Zp-i 
QZ^/Z^Q • • • CZi/Zo. 

PROOF. The assertion follows from two commutator relations for 
derivations. Let d be a nonzero derivation and let a(EK such that 
d(a) 7*0. Then d = [d, iad(a)"1d] — [%ad, d{a)~xd]. If ƒ is a derivation 
such that ƒ(&) = - 1/ib*-1 where 2£i£p-l, then [b*d, f] + [b% d] 
= d+cff cEK. 

LEMMA 3. Let the upper central series for G satisfy Zi /Z 0 = Zp_i/Zp_2, 
then (^t)GG and l^jûp — 1 implies that dj is a polynomial in deriva­
tions in Zp-i/Zp-2 and (dùÇ^G with di = 0 implies that dp is a poly­
nomial in derivations in Zp_i/Zp_2. 

PROOF. Let m be a generator for the multiplicative group of I/(p). 
Let (d»)GG have dn with n<p — 1 as its first nonzero map and let 
n<jgp-l. (m'di)(di)-~n =(fi),fi= / 2 = • • • =fn = 0,fj = (mt-fn»)d, 
+g where g is a polynomial in the mappings dn, dn-u * • * » ^y-i- This 
together with an inductive argument establishes the first part of the 
lemma. If di = 0 then n^2 and (midi)(di)-mn= (gi), gi = g2= • • • =gn 

=0, gp= (mp —mn)dp+h where A is a polynomial in the mappings dnj 

dn-u • • • t dP-i. The second part of the lemma then follows. 

2. Main result. Let G be a subgroup of HP(K) closed under scalar 
multiplication and having an upper central series satisfying: Zp /Zp_i 
and Zp-i/Zp-2 are finite dimensional subspaces of Der(i£) that are 
closed under pth powers and Zi /Z 0 = Zp_i/Zp_2. The restrictions im­
posed upon Zp/Zp^i are the conditions of the exponent one Galois 
theory. Let k be the field of constants of G; that is, k = {#G-K| di(x) = 0 
for each (di)ÇzG and l^iUkp}- If the exponent of K over k is one 
and Zp_i/Zp_2= • • • =Zi /Z 0 , then Theorem 19, p. 186 of [3] can 
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be used to show that G = Hp
k(K). We assume then that the exponent 

of K over k is two. This is equivalent to assuming that there is a 
(rf*)GG with di7*0. Let F denote the field of constants of Zp_i/Zp_2. 

DEFINITION. 

A{G) = {f:F-+K\f = dp]F for some (d,) G G | , 

i>(G) = {ƒ + «: K -> tfI ƒ = Jp for some (<*<) G G, g G #[Zi /Z 0 ] 

withg(O) = 0} . 

A (G) is a subset of Der(F, X) and P(G) is a subset of the ring of endo-
morphisms of K. Both -4(G) and P(G) are closed under addition and 
scalar multiplication by elements of Kp. 

THEOREM 1. Let G be a subgroup of HP(K) closed under scalar multi­
plication and having an upper central series satisfying Zp/Zp-i and 
Zp-\/Zp-2 are finite dimensional subspaces of Der(X) closed under pth 
powers and Z\/ZQ = Zp_i/Zp_2. If P{G) is closed under commutation, 
then A (G)QDer(F) and if in addition A (G) is closed under pth powers, 
then G = Hl(K) where k is the field of constants of G. 

PROOF. A(G)QDer(F) follows from noting that if d G Z i / Z 0 and ƒ 
is the pth map of an element of G, then [d, f ] | F = 0. An argument 
analogous to that used in the proof of Theorem 19, p. 186 of [3] 
establishes that the algebra of endomorphisms on F generated by 
A (G) is the set of those endomorphisms of F that are linear over k. 
A dimension argument can then be used to prove that F=Kp(k) 
and from this it follows that G = Hp

k(K). 

THEOREM 2 (CONVERSE OF THEOREM 1). If Hp
t(K) is finitely K-

generated then the group G = Hp
k(K) satisfies the hypothesis of Theorem 1. 

PROOF. Theorem 1 of [ó] and Theorem 1 of [5] are used to deter­
mine the structure of Hl(K). 

THEOREM 3. If Gis a subgroup of HP(K) satisfying the hypothesis of 
Theorem 1, then the minimal subalgebra of L(K, K), the ring of endo­
morphisms of K, containing the pth maps of G is Lk(K), the subalgebra 
of L(K, K) consisting of the endomorphisms which are linear over k. 

3. Remarks. If G is a subgroup of Hp(K)f let/(G) denote the field 
of constants of G. Let A be the collection of subgroups of HP(K) which 
satisfy the conditions of Theorem 1 and let J be the collection of sub-
fields kolK such tha t [K: k] < 00, exponent of K over k is two, and K 
is a tensor product of simple extensions of k. Then the mapping 
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k-*Hl(K) of I into A is the inverse of the mapping G—>f(G) from A 
into I. Thus we have a Galois type correspondence for a class of 
finite dimensional exponent two field extensions. 

I t was not necessary to require that Zp /Zp_i and ZJ,_i/Zp_2 be 
subalgebras of Der(K); Gerstenhaber [ l ] proved that a subspace of 
Der(üT) closed under pih powers is also closed under commutation. 

Sweedler [ó] proved that if k is the field of constants of any set of 
higher derivations defined on Kf then K is a tensor product of simple 
extensions of k. This fact was used in proving Theorems 1 and 2. 

Another contributor in this area, M. Weisfeld [7], has shown that 
K is a tensor product of simple extensions of k if and only if k is 
the field of constants of a higher derivation on K. 

By working with groups of higher derivations having length p2, pz, 
etc. one should be able to extend these results to higher exponent 
cases. 
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