CHARACTERISTIC CLASSES-OLD AND NEW!.?
BY FRANKLIN P, PETERSON

1. Definition of sphere bundles. Let M" be an n-dimensional,
C»-manifold. Define T(M) to be all vectors tangent to M of unit
length. Define p: T'(M)— M by p(vector) =initial point of the vector.
Then p is a continuous function with p~!(m) homeomorphic to S*—!
if meM. (T(M), p, M) is an example of an (n—1)-sphere bundle.

Let me now abstract some of the properties of this example and
define an (n—1)-sphere bundle. An (n—1)-sphere bundle £ is a triple
(E, p, X), where p: E—X is a continuous function, X has a covering
by neighborhoods {V.,} such that ha: p~H(Va)—> VX S*1, where &
is a homeomorphism, k.(e) = (p(e), Sa.(e)). That is, we can give co-
ordinates to p~1(V,) using V, and S*1. Furthermore, there is a
condition on changing coordinates; namely, if eEp~(V.MNTV}), then
ho(e) = (p(e), S«(e)) and hs(e) = (p(e), Ss(e)) and we obtain a func-
tion Sg: S*~1—S"! given by Sz(Sa(e))=Ss(e), defined for each
p(© E VN Vs We demand that S§&O0(n), the orthogonal group of
homeomorphisms of S*~!. Finally, S5 depends on p(e) and this de-
pendence must be continuous.

Two (n—1)-sphere bundles £ and 7 over X are called equivalent
if there is a homeomorphism F: E;—E, such that

F
E;— E,

IS
X

commutes and such that F | p~1(x) EO(n) for all coordinates on p~1(x).

A very important example of an (»—1) -sphere bundle is the fol-
lowing one. Let BO(n) =the Grassmann space of all #-planes through
the origin in R*. Let EO(n) be the set of pairs, an element of BO (%)
and a unit vector in that n-plane. Let p: EO(#)—BO (%) be the first
element of the pair. The importance of this example is shown by the
following classification theorem.

1 An address delivered before the New York meeting of the Society by invitation
of the Committee to Select Hour Speakers, April 13, 1968; received by the editors
April 21, 1969.

2 In order not to obscure the structure of the subject, I have left out a number of
technicalities; in fact some of the statements may be incorrect as stated.
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CLASSICAL CLASSIFICATION THEOREM. The equivalence classes of
(n—1)-sphere bundles over X are in one-to-one correspondence with the
homotopy classes of maps of X into BO(n).

2. Definition of characteristic classes. Roughly speaking, a char-
acteristic class is a cohomology class in H*(X) assigned to a bundle
£ over X which is natural with respect to bundle maps. Rather than
give a precise definition, let me give a construction.

Let uc H*(BO(n)). Let £ be an (n—1)-sphere bundle over X cor-
responding to a map fz: X—BO(n) by the above theorem. % defines
a characteristic class #(§)EH*(X) by u(f)=f;(u), wheref;:
H*(BO(n))—H*(X) is the homomorphism induced by f: (recall that
f¢ depends only on the homotopy class of f).

Thus, to study characteristic classes, we must study H*(BO(%)).
The answers, with various fields for coefficients, are as follows.?
H*(BO(n); Z,) is a polynomial ring over Z; on generators W;&
HiBO(n); Z,),i=1, - - -, n. Wi(£)=fF(W,) is called the sth Stiefel-
Whitney class of £&. H*(BO(«»); Z,) and H*(BO(x»); Q) are poly-
nomial rings over Z, (¢ is an odd prime) and Q respectively on gen-
erators P;EH*(BO(»); Z,) or H¥(BO(»); Q), i=1, - - -, Pi¥)
= f? (P,) is called the <th Pontrjagin class of £.

3. Some examples of applications of characteristic classes. The
study of characteristic classes has been very useful in differential
geometry, differential topology, and algebraic topology. I will now
give a few examples of such applications.

1. Cobordism. Let M™ be a closed, connected, C*-manifold of di-
mension #. Then M»=9W»+1, where W»+! is a compact, connected,
C-manifold with boundary, if and only if ff: H*(BO(n); Z,)
—H»(M™; Z,) is zero where 7 is the tangent bundle described at the
beginning of this lecture [17].

II. Homotopy spheres. Let O™ be the group of diffeomorphism
classes of homotopy spheres. Pontrjagin classes have been used to
study these groups. For example, O =~ Zg;,s [6].

II1. Embeddings and immersions. Given M, the problem is to find
the smallest 2 such that M* can be differentiably embedded or im-
mersed in R*+*, The initial results were proved using Stiefel-Whitney
classes. The techniques now are quite complicated and we are now
near to solving this problem for real and complex projective spaces.

IV. K-theory. Let KO(X) be the set of equivalence classes of
bundles over X, with dimension X <#. This forms a group and acts

# An excellent introduction to the classical theory, including proofs of the follow-
ing assertions, is to be found in [10].
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as a cohomology theory which has turned out to be very useful. For
example, one can prove that the maximum number of linearly inde-
pendent tangent vector fields on S*'is 2°4-8d — 1, where #n = (2¢+1)2?,
b=c+4d, 0=sc=<3 [1].

4. More general bundles. In recent years it has become clear that
one should study (#—1)-sphere bundles where the changes of co-
ordinates can be allowed to be in larger groups than O(n). Examples
of such groups, in increasing size, are: PL(n)=piecewise linear
homeomorphisms of S", Top(n) =homeomorphisms of S*~!, and
G(n) =homotopy equivalences of S*—1.

NEW CLASSIFICATION THEOREM. Let H=PL, Top, or G. There exists
a space BH(n) such that the equivalence classes of (n—1)-sphere bundles
with group H over X are in one-to-one correspondence with the homo-
topy classes of maps of X into BH(n) ([11] and (14]).

Using this theorem, we can give the same construction of charac-
teristic classes as we did in the classical case. In order to use these
characteristic classes, we need to know H*(BH(n)) with various
coefficients. Most of the rest of this paper is devoted to describing
what is known about H*(BH), where BH =lim,., BH(%).

5. m«(BH). Before stating the results on cohomology, let me first
give the known results on the homotopy groups of the classifying
spaces.

I. m(BO) is periodic of period 8 with mwe.:(BO)=2, Z,, Z,, 0,
Z,0,0,0, withi=0,1, 2, 3,4, 5, 6, and 7 respectively [2].

1I. 0—m;(BO)—m;(BPL)—I';_1—0 is an exact sequence where I';_;
is a finite group which is partially known. Also, the structure of the
exact sequence is known ([5] and [4]).

III. 7;(Top/PL) =0 if i3, and m3(Top/PL) =Z, [7].

IV. m:(BG) =mi_14%(S*), k large; hence, known to a certain extent.

V. m;(G/PL) is periodic of period 4 with 74.:(G/PL)=2Z, 0, Z,, 0,
with £=0, 1, 2, and 3 respectively [15].

6. H*(BH; Q). Using the above results on s, it is easy to see that
H*(BG; Q)=0 if >0 and that H*(BTop; Q)—H*(BPL; Q)—
H*(BO; Q)—Q|[P;, - - - ] are all isomorphisms.

7. H*(BH; Z,). There exists a connected Hopf algebra C(H) over
the mod 2 Steenrod algebra 4. such that H*(BH; Z;) ~ H*(BO; Z,)
® C(H), as Hopf algebras over 4, [3]. C(0) is trivial of course. C(G)
is 2-connected, and its structure has been determined recently [9].
C(PL) and C(Top) are still unknown.
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8. H*(BH; Z,), p odd. The situation is a little different from the
case p=2. Analogous to the case p=2 we have H*(BG; Z,)
=~ (Z,[q:]® E(Bg:)) ® C»(G), where ¢;€H®»—»(BG; Z,) is the Wu
class, Bg; is its Bockstein, and C,(G) is a Hopf algebra over 4, [13].
Furthermore, C,(G) is (p(2p—2)—2)-connected and its complete
structure has been found very recently [7].

H*(BTop; Z,)—H*(BPL; Z,) is an isomorphism by §5, III, so we
need only study H*(BPL; Z,). It is an unpublished theorem that if
p is an odd prime, BPL is of the same mod p homotopy type as
BO X B Coker J, where B Coker J is a space whose homotopy groups
are the cokernel of the homeomorphism J: m+«(BO)—ms(BG) [16].
However, the map BO X pt.—BO X B Coker J—BPL is not the usual
map so this is quite different from the case p=2. Also, the map
Jrr: BPL—BG has the property that Jp(8¢:) =0 if <p and is not
zero if 1=p+1. The best conjecture at present seems to be that
Co(G) ~H*(B Coker J; Z,). To complete the picture, we need to
know J3(g:) explicitly [12].

9. Applications. One expects that a good knowledge of these new
characteristic classes will lead to many applications as in the classical
case. I mention only one, namely that §3, I generalizes to the PL case.
Thatis, let M* be a closed, connected PL-manifold. Then M*» =9 Wnt1,
where Wnt1 is a compact, connected PL-manifold with boundary, if
and only if f¥: H*(BPL; Z))—H"(M"; Z,) is zero [3]. A similar
theorem is true for oriented C*-manifolds, but for oriented PL-mani-
folds, it fails in dimension 27 (though true in lower dimensions) [12].
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