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1. Introduction and the result. Consideration of the motion of a 
viscous fluid in a vessel with moving walls or in a vessel containing 
rigid bodies moving through the fluid leads us to the initial value 
problem for the Navier-Stokes equation in a noncylindrical domain 
in (t, #)-space. This problem will be denoted by (Pr. NC). Let Q(/) 
<ZRm (m = 2 or 3) be the domain filled by the fluid at time t and let 
r ( / ) be the boundary of Q(/). We shall be concerned with the flow for 
the time interval [0, T](T>0). We put 

Û = U 0(0 and f = U T(0. 
te[o,T] te[o,T] 

(Pr. NC) in its classical form is to find out the velocity field u = u(t, x) 
and the pressure p = p(t, x) which satisfy the following. 

ut = Au — Vp — (wV)u + ƒ(/, x) inâ , 

V-u = div# = 0 inÔ, 

u = /?(/, x) on f, 

u = a(x) in 0(0). 

ƒ, j8 and a are given (vector) functions. Here and hereafter the differ­
ential operators A and V mean those for x variables only. The special 
case of (Pr. NC) with Q(/) independent of / will be denoted by (Pr. C). 
The objective of the present note is to extend E. Hopf's existence 
theorem (cf. [l]) for weak solutions from (Pr. C) to (Pr. NC). In­
tending to emphasize rather the straightforwardness of the method 
than the generality of the result, we here make the simplifying as­
sumptions (A1)-(A3). These assumptions will be released completely 
or weakened considerably in a forthcoming paper where we shall give 
full details of our study. 

1 This research was partly supported by the National Science Foundation, Grant 
NSF-GP-8114 while the authors were visiting members at the Courant Institute of 
Mathematical Sciences. The first author was subsequently supported as a visiting 
professor in the Mathematics Research Center, United States Army, Madison, Wis­
consin, under Contract No. DA-31-124-ARO-D-462. 
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(Al). /s=0 and 0 = 0 . (The latter may not be physically reason­
able!) 

(A2). For some fixed bounded domain BC.Rmwe have (5(0) C.B. 
(A3). T(t) is composed of a finite number of smooth simple closed 

surfaces (curves if m = 2). Also Y(t) changes smoothly as / increases. 
(Unfortunately we do not have enough room in this short paper to 
specify the "smoothness" involved in (A3). We only note that (A3) 
is needed mainly for the proof of Lemma 5.) 

We now state our main theorem, although the definition of weak 
solutions and that of i2V(Q(0)) are to be given in §3. 

THEOREM 1. Assume (A1)-(A3). If aG H„(0(0)), then there is a weak 
solution u of {Pr. NC). 

REMARK 2. If m = 2, the uniqueness theorem by J. O. Sather and 
J. Serrin (cf. [2]) is applicable to our weak solutions. 

The authors wish to thank Professor Masatake Kuranishi for 
valuable advice in connection with the proof of Lemma 5 which is, 
however, too long to be contained in this paper. 

2. Approximating problems. The basic idea of our method is to 
approximate (Pr. NC) by the following initial value problem 
(Pr. AP)n in the cylindrical region B = [0, T] XB, n being an arbitrary 
positive integer; 

ui = Aun — Vpn — (un- V)un — nx(t, x)un in B, 

V-un = 0 'mB, 

un
 \ÔB = 0 on [0, T] X dB, 

«n | t-o = à{x) mB. 

Here x(*> x) is the characteristic function of E = Ê—Û and â means 
the natural extension of a to B, that is, â = a in 12(0) and <z = 0 in 
B — Q(0). We note that if {un} or a subsequence of it converges to w 
as n—>oo in some sense or other, then the limit û is a good candidate 
of the solution of (Pr. NC). In fact, it is easy to derive the following 
a priori estimate for un; 

(1) \\u»(t)\f + 2 f)\ Vu\\*ds + In f \Xu», u»)ds S |M|2, 

t being any number in [0, T]. Here || || denotes the L2(5)-norm of 
vector functions and tensor functions. Other symbols in (1) are 
understood. From (1) it is obvious that un—>0 strongly in L2(E) as 
»—» oo. Thus the restriction of the limit ü onto Ù will give the required 
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solution. Our actual proof of Theorem 1 is to justify this argument. 

3. Definition of weak solutions. First of all we introduce some 
symbols. In this section u and <t> stand for vector functions. Let Ü be 
any bounded domain in Rm. Then 

D9(Q) = {0 G C°°(0) I supp4> C Û and V-0 = 0}. 

jff,(Q)=the completion of Da(®) under the L2(Œ)-norm. #2(0)= the 
completion of D0($l) under the Wl(Q)-norm or equivalently, under 
the Dirichlet norm. The inner product in L2(Q) is written as ( , )Q 
or simply as ( , ) when Ö is understood. 

Now let G be either B or Û. Note that G is closed at the 'top' and 
at the 'bottom.' We put 

t>,(G) = {* G C"(G) I supp K G , V ' * = 0}, 

#J(G) =the completion of z3,r(G) under the norm 

( I r 1 v*('> *) 1 <&** ) 
DEFINITION 3. u — u{t, x) defined in Û is called a weak solution of 

(Pr. NC) if (i)-(iii) hold. 
(i) uEÊKÛ). 
(ii) For every *G[0, T], u(t)=u(f, -)EH9(Q(f)) and ||«(/)|| is 

bounded on [0, T], 
(iii) For every 0G JO„(Q) vanishing a,tt=T, the equality 

(2) ƒ» T 

{(u, 4>t) + («, A*) + («, («• V)0)}<*/ = - (a, 0(0)) 
o 

is satisfied, where 0(0) =0(0, •)• 
DEFINITION 4. un = un(t, x) defined in B is called a weak solution of 

(Pr. AP)n if (i)-(iii) hold. 
(i) u»GÊl(Ê). 
(ii) For every *G [0, T], un(t)=un(t, -)EH9(B) and ||ww(/)|| is 

bounded on [0, 71]. 
(iii) For every <f>EDff(Ê) vanishing at t= Tt the equality 

un, <f>) = n I (x«n, * ) * ~ (5, < 
«J o 

(3) F(«», 0) = * | (x«n, *)<** ~ (5, *(0)) 

is satisfied. 

4. Outline of the proof of Theorem 1. The basic idea of the proof 
was mentioned in §2. We briefly indicate necessary steps in the proof. 
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1st Step. Exactly as in [ l ] , we prove that (Pr. AP)» has a weak 
solution un for which the inequality (1) holds. 

2nd Step. Following the argument in [l ] with a slight modification 
we show that it is possible to select a subsequence {vn} of {un} such 
that vn converges to ü weakly in Ê\(B)y vn\ E converges to 0 strongly 
in L2(E), and that for every compact set KC.Û the restriction of vn to 
K converges strongly in L2(K). I t is easy to verify that u = ü\ Û satis­
fies (2). 

3rd Step. Use the following lemma to show that u^Ê\(Û). We 
recall (A3). 

LEMMA 5. Let wEÔl(Ê). If w = 0 in E = Ê-Û, then w\ÛEÊl(Û). 

4th Step. Following the argument in [2] or reexamining the proce­
dure in the 2nd step, we realize that u(t) satisfies the second condition 
of Definition 3 after possible redefinition on a null set of /. 
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The proof of Lemma 2 is incorrect. Theorem 1 remains correct 
provided we add the hypothesis that G has an element which acts 
ergodically by translation. In this case, we can apply the pointwise 
ergodic theorem and the Lebesgue dominated convergence theorem 
in place of Lemma 2. 


