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1. Introduction. The Cartan domains, which we shall define in 
§3, include among them the four general types of (irreducible) 
bounded symmetric domains, first studied by E. Cartan [2], [3 J. An 
(essentially unique) invariant Riemannian metric—the Bergman 
metric—exists on each of these bounded symmetric domains, and 
the resulting differential geometry has been studied by Siegel [7], 
Hua [4], [5], Look [ô] and others. 

In this note we describe how the differential geometry of Cartan 
domains can be studied neatly and effectively through a study of the 
Euclidean w-planes in a pseudo-Euclidean (w+m)-space of index m. 
Our results include a geometric interpretation of the Bergman metric, 
the theorem that domains of the second and third types are totally 
geodesic submanifolds of a domain of the first type, and ranges of 
value of the sectional curvature. Only a brief description of the 
method and results will be given here. The reader will find in this and 
three other notes [8], [9], [lO] the essence of the differential geom­
etry of the eight nonspecial types of irreducible Hermitian symmetric 
spaces (see [ l]) . 

2. Euclidean n-planes in a pseudo-Euclidean space. Let F be the 
field R of real numbers, the field C of complex numbers, or the field 
H of real quaternions. Let {1, i, j$ k} be the usual basis of F over R. 
If £ = a o + a i i + a ? i + a 3 & , then 

£ = a0 — a\i — a%j — 03&, £r = a0 + ai* + &2j — 03A 

are two conjugates of £. If A is an n X m matrix with elements in F, we 
denote by A*, AT the two respective conjugate transposes of A. For 
a square matrix Af if A* =A, AT = A, or AT= —A, we say, respec­
tively, that A is Hermitian, r-symmetric, or r-skew-symmetric. 
Clearly, for F = R or C, r-symmetry and r-skew-symmetry are the 
ordinary symmetry and ordinary skew-symmetry. 

By definition, a pseudo-Euclidean space F$)m (of index m) is an 
(n+m) -dimensional left vector space over F provided with a (Hermi­
tian) inner product ( , ) such that there exist «-planes (i.e. w-dimen-
sional vector subspaces), but not (»+l)-planes, on which the induced 
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inner product is positive definite. In F^m
t natural systems of rec­

tangular coordinates exist such that if 

(x, y) s (xu • • • , xn; *n+1, • • • , #n+m) 

are the coordinates of a vector u, then (u, u)=xx*—yy*. 
An important case of F^m is the real hyperbolic plane R\^. If u, v 

are two vectors of R2^ such that (u, u), (u, v) and v, (v) are all > 0 , 
then there exists a unique real number 0, called the angle between u 
and v, defined by 

cosh 6 = (u, v)/((u, u}<v, v»1 '2 , O ^ K + oo. 

In F î)*1, an n-plane is called a Euclidean n-plane if the inner prod­
uct induced on it is positive definite. Let A an dB be two Euclidean 
n-planes in F^)m. We can prove that, if u is a nonzero vector in A, 
and v the orthogonal projection of u in B, then 

(i) v ^ O ; and 
(ii) either v = u, or u and v span an JR(D and (u, v ) > 0 . Thus there 

exists a unique angle between any nonzero vector u in A and its 
projection in B, and we can define the angles between A and B as the 
stationary values of the angle between u and its projection in B as u 
runs through .A. With this done, the development of the geometry of 
Euclidean n-planes in the pseudo-Euclidean space F$)m proceeds 
parallelly to that of the geometry of «-planes in the Euclidean space 
pn+mt The definitions and results in [8, §2] can be carried over with­
out difficulty. For example, we can prove that there are n angles 
between two Euclidean n-planes A and B in F$T and they completely 
determine the relative position of A and B; moreover, there are or­
thogonal frames of angle-planes (i.e., real hyperbolic planes contain­
ing the angles) associated with A and JB, and so on. 

3. The Cartan domains. The first Cartan domain, denoted by 
A(/755m). is the manifold of Euclidean n-planes in FföM. Let (x, y) be 
a natural, system of rectangular coordinates in Fffi*. We can prove 
that an n-plane in F^ is a Euclidean n-plane iff it has an equation 
of the form y = xZ, where Z i s a n w X m matrix such that ƒ•— Z Z * > 0 
(i.e., the Hermitian matrix 7—ZZ* is positive definite). Thus, 
D\{F$)m) can be identified with the space of all nXm matrices Z such 
that I — ZZ*>0. The elements of Z serve as coordinates in Di(F^m). 

In Ffn)f the equation 

(3.1) xyr - yxr = 0, 

where (x, y) and (x, $) are the coordinates of two vectors in F^, 
determines a null system; and the equation 
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(3.2) xyT + y& = 0 

determines a hyperquadric. The second Cartan domain, denoted by 
Dji(Ffn))y is the manifold of all the Euclidean w-planes in F2% each of 
which is self-polar with respect to the null system (3.1). The third 
Cartan domain, denoted by Aii(^?»n))t , s t n e manifold of all the 
Euclidean w-planes in Ffy each lying entirely in the hyperquadric 
(3.2). It is easy to see that Du(Ff%) (resp. Dm(Ffû))) can be identified 
with the space of all nXn r-symmetric (resp. r-skew-symmetric) 
matrices Z such that I—ZZ* > 0. 

The group of motions in 7^j m induces on Di{F^)m) a transitive 
group Uj(F^^m) of motions. The subgroups of UilFfn)) which leave 
Dii(Ffy) and Dm(Ff%) respectively invariant are also transitive. 
Thus Cartan domains are homogeneous spaces; in fact, they are 
symmetric spaces. 

We observe that the Cartan domains A(C?„t>w), Ai(Cfn
n))> An(Cfn)) 

and Di{R\n)n) a r e precisely the four general types of irreducible 
bounded symmetric domains (see [3], [5, p. 5] and [l, p. 489]). 

4. Invariant Riemannian metric and geodesies in Cartan domains. 

THEOREM 4.1. The sum of squares of the n angles between two consecu-
tive Euclidean n-planes in F*l+™ provides A(/7J»)W) wt/A an invariant 
Riemannian metric whose analytic expression is 

ds2 = Re Tr[(7 - ZZ*)~ldZ(I - Z*Z)~1dZ*], 

where Re Tr denotes the real part of the trace. In particular, for F=C, 
this reduces to the Bergman metric 

ds2 = Tr[(7 - ZZ*)~ldZ(I - Z*Z)~*dZ*]. 

We have thus a nice geometric interpretation of the Bergman 
metric on bounded symmetric domains of the first type. 

THEOREM 4.2. The differential equation of the geodesies in Dj(F^m) is 

2 + 2zz*(i - zz*yiz = o, 
where the dots denote derivatives with respect to the arc length s. 

THEOREM 4.3. Any geodesic in Di(FfâM), Dn(F$), or Dm(F^) is 
congruent respectively to 

rZx(s) 01 
(i) Z = , Zi(s) = diag(tanh r^ , • • • , tanh rrs), 

(ii) Z = Z(s) = diag(± tanh Tis, • • • , ± tanh rrs> 0, • • • , 0), 
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or 
( T cos coik sin o>i "1 

(iii) Z = Z(s) = diag < t a n h r ^ , • • • , 
I L — sin cat — cos o)ikJ 

r cos <aqk sin cofl 
tanh Tqs 

L — sin wfl — coscoqk 

± (tanh r2fl+i5)A, • • •, ± (tanh r^)A, 0, • • • , 0 

where in (i) and (ii) the r ' s are positive numbers such that ( r i ) 2+ • • • 
+ (r r)

2 = l, awd in (iii) /fee r ' s and co's are positive numbers such that 
2(r i ) 2 + • • • + 2 ( T Ç ) 2 + ( T 2 < H - I ) 2 + • • • + ( r r ) 2 = l and eacft o/ tóe «'s 
iS <7T. 

THEOREM 4.4. A C2-curve T in Di(F$m) is a geodesic iff when it is 
viewed as 1-parameter family of Euclidean n-planes in F^m

9 

(a) all the pairs of Euclidean n-planes of V have common angle-
planes, and 

(b) the n angles {arranged in a definite order) between any two 
Euclidean n-planes of T are proportional to a fixed set of (nonnegative) 
constants. 

THEOREM 4.5. (a) There is a unique geodesic segment joining any 
two points in Di(F^m) (for F=C, this is known; see [6]). 

(b) The geodesic segment joining the two points A and B in Di(F$)m) 
is of length [2(0 t)

2]1/2, where 0«- are the n angles between the Euclidean 
n-planes A and B in F^m. 

The geodesies in Du(F^) and An(-Ffn)) also have the properties 
stated in Theorems 4.4 and 4.5. However, the following inclusive 
theorem can be proved. 

THEOREM 4.6. Dn(F^)) and Dm(FfS)) are totally geodesic submani-
folds of A(Fg). 

Two Euclidean w-planes in Ffy are said to be mutually isoclinic if 
the angles between them are all equal. We can prove 

THEOREM 4.7. Any maximal set of mutually isoclinic Euclidean 
n-planes in Ff£) when viewed as a subset of Di(F^) is a totally geodesic 
submanifold which is analytically isometric with the pseudo-sphere of 
curvature —é/n. 

5. Sectional curvatures of the Cartan domains. Explicit expression 
for the sectional curvature of Di(Ffâm) differs from that of the Grass-

• 
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mann manifold Gn(F
n+m) as given in [10, §3] by only a sign. From 

this expression, we can obtain the ranges of value of the sectional 
curvature of all the Cartan domains, listed in the following table. 

SECTIONAL CURVATURE K 

Cartan Domain 

DitF&D 

ih(cun>*<Pi2n 

Dn(R2û) 

Ai(Cfo), Dn(H
2û) 

Dm(R{2)) 

Dm(C{n)) 

Dm(H(S)) 

tt=l, W = l 
w=l, m^2) 

or » ^ 2 , w = lj 
» ^ 2 , m^2 

w = l, m = l 
» = 1, w^2l 

or » ^ 2 , w = l j 
» ^ 2 , w ^ 2 

w^2 

« ^ 2 

w = 2 
» = 3 
» ^ 4 

w = 2 
« = 3 
» ^ 4 

» ^ 2 

Range of Value of K 

Sectional curvature not defined 

-2^K^0 

- 4 ^ K ^ - 1 

-2£K£0 

- 4 ^ Ü : ^ O 

Sectional curvature not defined 

K=-2 
-2<>K^-\ 
-2^K£0 

-2^K^Q 

ADDED IN PROOF. The following results can be proved : 
The Cartan domains 

Di(R(m)), 

f 2n . 

. 2n 
Dui(R(n)), 

. 2n . 
DlIl(C(n))t 

WO; 
In 

have respectively the scalar curvatures 

—nm(n + m — 2), —\nm{n + m), — 16nm(n + m + 1) ; 

-\n{n - 1)(» + 2), -2n(n + l)2, -4w(w + l)(2n + 1); 

-Jfi(ii - 2)(n - 1), -2w(w - l)2, -4w(n - l)(2n + 1). 
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Moreover, with the exception of Du(Rfy) and Dm(H^))t they are all 
Einstein spaces. 

The author is deeply indebted to Professor S. S. Chern for the 
many helpful discussions he had with him at Berkeley in the Spring 
term of 1967—discussions that eventually led to the results outlined 
in this note. The author is also grateful to Professor Chern's col­
leagues, especially Professors S. Kobayashi, J. A. Wolf and F. W. 
Warner, for several stimulating conversations concerning differential 
geometry of Grassmann manifolds. 
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