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1. Introduction. The spectacular results in the fluctuation theory of 
sums of independent random variables, obtained in the last 15 years 
by Andersen, Baxter, Bohnenblust, Foata, Kemperman, Spitzer, 
Takacs and others, have gradually led to the realization that the na­
ture of the problem, as well as that of the methods of solution, is alge­
braic and combinatorial. After Baxter showed that the crux of the 
problem lay in simplifying a certain operator identity, several alge­
braic proofs (Atkinson, Kingman, Wendel) followed. It is the present 
purpose to carry this algebraization to the limit: the result we present 
amounts to a solution of the word problem for Baxter algebras. The 
solution is not presented as an algorithm, but by showing that every 
identity in a Baxter algebra is effectively equivalent to an identity of 
symmetric functions independent of the number of variables. Re­
markably, the identities used so far in the combinatorics of fluctuation 
theory "translate" by the present method into classical symmetric 
function identities of easy verification. The present method is never­
theless also useful for guessing and proving new combinatorial iden­
tities: by way of example, it will be shown in the second part of this 
note how it leads to a generalization of the Bohnenblust-Spitzer 
formula for the action of arbitrary groups of permutations. A parallel 
theory of inequalities will be presented elsewhere. 

2. Definitions. Let A be a commutative ring. A Baxter operator on 
A is a linear function P mapping all of A into itself and satisfying the 
identity 

(1) P(fPg) + P(gPf) - PfPg - P(fe). 

The pair (-A, P) will be called a Baxter algebra. 
Let O be the category whose objects (A, T) are rings A together 

with operators T:A—>A s.t. T(f+g) = Tf+Tg, and whose maps 
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h: (A, T)-^(A', T') are ring endomorphisms h: A-*A' such that h(Tf) 
— T'h(f). (We sometimes use the same letter for operators on differ­
ent rings.) The full subcategory of O whose objects are Baxter alge­
bras will be denoted by B. By standard results in universal algebra 
(cf. Cohn), both O and B contain free algebras on any nonempty set 
of generators. Recall that a (Baxter) algebra is free on a nonempty 
set S of generators if and only if any function ƒ : S-+A extends 
uniquely to a morphism ƒ: (A(S), P)-+(A, P) of the free (Baxter) 
algebra (A(S), P) on the set S. (Note: A(S) is not a polynomial ring, 
and it does not necessarily have an identity.) 

3. Main result. Let F be a, field of characteristic zero, having an 
infinite degree of transcendency over the rationals, and let R be the 
ring of all infinite sequences u = (ui, «2, us> ' ' • ) with entries unÇzF. 
Multiplication in/£isdefinedcomponentwise,uv= (uiVuU2V2,u$Vz, • • •)» 
addition as usual. For k = l, 2, • • • , n, choose an n-tuply infinite 
array {xf: l^k^n, l ^ i ^ <» } of independent transcendentals in F, 
and set #* = (x\, x\, x\, • • • ). 

Call xh a free sequence. 
Define the operator P in R by 

(2) P: («1, «2, « ! , • • • ) - > (0, «i, Ui + u2, ui + u2 + uZ} • • • ). 

It was remarked by Baxter—and it is easily verified—that P, thus 
defined, is a Baxter operator. Let Sn be the Baxter subalgebra of 
(jR, P) generated by the free sequences xl, x2, • • • , xn

t that is, the 
smallest subring of R containing the xh and closed under the action of 
P; the object (Sn, P) will be called the standard Baxter algebra on n 
generators. We can now state our main result: 

THEOREM. The standard Baxter algebra (Sn, P) on n generators 
(w>0) is free. 

MAIN STEPS ON PROOF. (1) Let/i,/2, • • • , ƒ» be the generators of a 
free Baxter algebra (Any P), let h, k, • • • , tn be the generators of a 
free algebra (Fn, T) in the category O. Then the map g: tr-*fu 
l^ti^n, extends uniquely to a morphism, again denoted by g, of 
(Fn, T) to (An, P), in the category O. It must be shown that the 
morphism g factors through (Sn, P), as in the diagram below. 

(F„,T) 

(S„,P)—*(i4„,P) 

where h: ti—tx* and ƒ: **—»ƒ<, and where A and ƒ are morphisms in O. 
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I t then follows that ƒ is a morphism in B, The morphism h is 
uniquely determined by the requirement h: /,—»#*'; by one of the 
Noether theorems (cf. Cohn) all one has to show is that whenever 
h(p) = 0 for some pEFn, then g(p) = 0. 

(2) The ring Fn is a polynomial ring (without identity) in infinitely 
many generators; if u is a generator and u^U, then u can be uniquely 
written in the form u = Tv, where v is a product of generators, or 
monomial. From this, it follows that we can associate to every 
monomial m in Fn an integer occ(m), counting the number of occur­
rences of T in the (unique) expression of m in terms of T and the U. 
An element pÇzFn is a unique sum of monomials; set occ(p) to be the 
maximum of occ(m), as m ranges over all monomial summands of p. 
The proof is by induction over the integer occ(p). 

If m and m' are monomials, o c c ^ m ' ^ o c c t f ^ + o a ^ m ' ) and 
occ(Tm) = occ(m) + l . 

(3) Every monomial m £ F » differs by an element of the kernel of 
g from a sum of terms, each of which is of one of the forms: aTb, a, Tb, 
where a and b are monomials and occ(a)=0, and occ(b) <occ(m). 
Indeed, if m is not of any of these forms, then the expression of 
m as a, product of generators contains at least two terms Tc and 
Td, where c and d are monomials. By identity (1), TcTd differs from 
T(cTd+dTc+cd) by an element of the kernel of g. Clearly 
occ(cTd+dTc+cd) <occ(TcTd). Induction completes the proof. 

(4) Hence, every pÇzFn is of the form p = q+r, where g(r) = 0 and q 
is a sum of monomials, each one of which is of one of the forms listed 
in (3). To complete the proof, it must be shown that if h(q) = 0, then 
g = 0. Now, if occ(z)>0 for any J S £ F « , then the first entry of the se­
quence h(z) is 0. Hence, if w is the sum of all monomials of q not con­
taining any occurrence of T, then h(w) = 0. But w is a polynomial in 
the t{, hence h(w) is a polynomial in the x*; hence ze> = 0. Thus g is a 
sum of terms of the form aTb and Tb. 

(5) Let y be the sum of all summands of q of the form aTb, where 
occ(a) = 0 , and a7*0. The second entry of the sequence h(a) is a poly­
nomial in xl, l^i^n; the second entry of h(Tb)=Ph(b) is a poly­
nomial in the x\, l^i^n. I t follows that h(y) = 0 only if y = J^y aTbj, 
a n d f t ( £ y r&y)=0. 

(6) I t is easily verified by induction that if Pu = 0 for vÇE.Sn, then 
v = 0. 

(7) I t follows from (4) and (5) that if h(q) = 0 , and q5*0, then there 
exist two terms n and s in F n , such that h(Tn) =h(Ts) = 0 , and 
occ(w)<occ(g), occ(s)<occ(g). But h(Tn)=Ph(n)=0. By (6), we 
infer h(n) = 0 . Similarly, h(s) = 0 . Since occ(n) <occ(q), the induction 
hypothesis gives # = 0, and the proof is complete. 
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The preceding Theorem states that every identity in an arbitrary 
Baxter algebra is true, whenever it has been verified in the standard 
Baxter algebra, where it reduces to an identity between symmetric 
functions. 

4. An example* Consider the algebra (Si, P) generated by 
x — {x\y X2, #3, • • • ). Easy computations (cf. Baxter) show that the 
(fe + l)th entry of the vector sn=P(xn) (xn is the wth power of x) is 
the symmetric function #J+xS+ • • • +xl. Similarly, the feth entry 
of the vector an = P(xP( • • • (Px) • • • )) with n occurrences of P% 

is the nth elementary symmetric function an in the variables 
Xu ' • • » Xk. Waring's formula states 

(3) Z «-(-«"-expf-Z-T A 
n*0 \ t i l * / 

and is valid in the algebra of formal power series in the variable / with 
coefficients in Si. By the Main Theorem, the same formula is valid in 
an arbitrary Baxter algebra, giving the Baxter-Spitzer formula: 

(4) 2 (~t)»P(xP(xP • • • ( ! > * ) - • . ) ) - exp(-P log(l - tx)~l). 

Further identities, as well as applications to the Baxter algebras 
arising in probability and combinatorial theory, will be given in the 
second and third parts. 
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