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1, Introduction. Let (#*, ƒ») be an unconditional basis for a Banach 
space E. Let w denote the positive integers and 2 the finite subsets of 
w. For <r£2 let 

L9 = [xit i £ ( r ] and L* = [#»: i G o\a] 

where the bracketed expressions denote the closed linear spans of the 
indicated elements. 

If Sa(x) = 2»e«r fi(x)xiQ,nd Sa(x) ^=x — S<r(x)i let 

Ba(x) = <z0 G Lw: \\x - s0|| = inf \\x - s||> 
I sex* ; 

and 

£'(*) = jso G L*: ||* - soil = inf \\x - * | | 1 . 

Answering a question raised by L Singer [ô], [7], it is shown in [4] 
that it is always possible to introduce an equivalent norm in E so that 
B9(x) = {SAX) } and B°(x) = {S°(x)} for each xEE and <rGS, i.e., in 
these particular subspaces of finite dimension and finite codimension 
the "near point mapping" is single-valued, linear and continuous. 

In this note we complete the study of unconditional bases and best 
approximation in Banach spaces, initiated by Singer [ô], by showing 
that Ba(x) = {S<r(pc)} implies also that Bff(x) = {S*(x)} and giving an 
example where the converse fails. The subsequent theorems and 
remarks show how exacting this example actually is. 

These phenomena described above are peculiar to the theory of 
unconditional bases. Appropriate examples for the ordered case are 
given in §3. 

2. Orthogonal sequences. Best approximation for the subspaces 
La and L' is closely related to the following orthogonality conditions. 

(2.1) DEFINITION. A sequence (yn) in E is 

(i) orthogonal provided || X^e« «0^|| ^ | | Z)<e/j «<y*|| f o r «» ft « C f t 
/?G2 and arbitrary scalars (a%)i<=p\ 
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(ii) strictly orthogonal provided the inequality of (i) is strict when­
ever ]C<e/^« | 0*| 3*0; 

(iii) coorihogonal provided || ^«'€»*v #<y*|| = II ]C*e»^« <x#i|| for arbi­
trary a, /5, aCjSj /3GS and arbitrary scalars (a*) for which J^te*» &*#* 
converges; 

(iv) strictly coorthogonal provided the inequality of (iii) is strict 
whenever ]S£**e/r̂ a |a»| ?*0. 

(2.2) REMARKS, (a) A sequence (yn), j n ^ O , [y w : ^Gw]=E , satis­
fying any of (2,1) (i)~(iv) is necessarily an unconditional basis of E. 

(b) The unit vector basis of (c0) satisfies (i) and (iii) above but not 
(ii) and (iv). The unit vector basis of ll satisfies (ii) and (iv). 

(e) (i) and (iii) are equivalent, (ii) implies (iii) and (iv) implies (ii). 
There is a certain duality for an unconditional basis (xn) and its 

sequence of coefficient functionals (fn). 
(2.3) REMARK. The sequence (xn) is orthogonal only if (fn) is 

orthogonal. 
The examples of (2.2) (b) show that the strict version of (2.3) is not 

valid. 
The meaning of Definition (2.1) is given by the following theorem. 

(2.4) THEOREM. Let (#») be an unconditional basis for E. Then 
(a) (xi) is orthogonal if and only if {S*(x)} ÇzBa(x) for allx^E and 

(b) (xi) is strictly orthogonal if and only if {Sa(x)\ = B(T(x) for all 
x £ £ and 0"£2; 

(c) (xi) is coorthogonal if and only if {Sff(x)} ÇzB9(x) for all x £ E 
and c r £ 2 ; 

(d) (xi) is strictly coorthogonal if and only if \Sa(x)} =Bff(x) for all 
x £ E and <r£2. 

PROOF. We prove (d). This proof includes the proof of (c) and the 
others are analogous. If Ba(x) *= {S0(x)} for all # £ £ and «rES, then 
for aC/3, jSGiS, x= ]T)*e« ÛW» and J ^ r - a \ai\ ^^ w e n a v e ( s m c e 

LaCLp) 

| | * - S . ( * ) | | *\\x-Sfi(x)\\. 

If equality holds then, since Sa(x)CzLp and Bp(x) is one-pointed by 
hypothesis, we must have Sa(x)—Sp(x), contradicting 2 ^ G ^ a |a,-| 
5*0. 

On the other hand, if (#») is strictly coorthogonal, then for any 
<rÇE2 and y = ]£*€» biXiÇzL, and for any # £ £ , we have 

Sff(x)\\ = J2 M*)*i HMx)xi + (y+Sw(x)) 
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(taking a,i=fi(x)+bi for i£cr, a,i=fi(x) for i£jî<r, and applying (2.1) 
(iii) card a times) and so S<T(x)Ç.Ba(x). If there is a o-£2 and y 
= ^ie<rbiXi9£Sa(x) such that yE:B*(x) then there is an i£<r such 
tha t / i (* - - :y )^0 . Thus, 

||* - S.(*)|| = ||S*(*)|| < ||s*(*) + £ ƒ,(* - y)xj 

= 11* -H I = | | * - s . ( * ) | | . 
From this contradiction we infer that {&(#)} = Bff(x). 

In view of (2.2)(c), (2.4) and the examples in §3 below, the follow­
ing example is somewhat surprising. 

(2.5) EXAMPLE. Let E have the same members as (c0) but with 
norm defined by 

IK*», # 2 , = sup | xi | 
•=2; »>*n 

* P , | 2 -

where the sup is for all n*z2 and all permutations (pi) of co\{l} . If 
\x\ denotes the usual norm of (co) then it is easily seen that i\x\ 
è\\x\\ g f \x\ and so E is isomorphic to (c0). 

1. The unit vector basis (e*) of E is strictly orthogonal. To see this, 
let j8G2 and aC/3. The norm of ]C*e« a»£» is attained for a particular 
value of n and a particular permutation (pi). A larger sum must be 
obtained when this same n and permutation (pi) are used for 
l^izfi caei provided Z)*"e/r-« |a»| 5^0. 

2. 
00 J 

2 — «* 
m=2 'M 

= E - 2 -
m=2 W 

and so (ei) is wo/ strictly coorthogonal. 
I t is clear that 

Also, 

ro-l W w=2 W 

W 
= sup 

oo l 

m»2; m^n ^ m - s m=2 'm 

Since 

1 « 1 
- 2 - + £ - 2 -

oo J 

+ £ -2" 
m-=2;m?£n ^ 

*° 1 
= £ - 2 -

m»=2 W 

the result follows. 
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The meaning of this example in terms of (2.2) (c) and (2.4) is 
immediate. 

Since best approximation to finite dimensional subspaces is unique 
in strictly convex spaces, it follows that in such spaces (2.4) (b) and 
(d) are equivalent. In particular, for E Hubert space we easily obtain 
the results of [7]. 

It is interesting that any Banach space E with an unconditional 
basis (xn, fn) can always be given a strictly convex norm satisfying 
(2.4)(b) and (d). Indeed, let 

1*1 = sup{ £ I ƒ(*,)ƒ*(*) I : 11/11 ̂  l } + Z I ƒ<(*) I 2~< 

be the norm of [4] satisfying (2.4)(b) and (d). Let | | \x\ | | be the 
strictly convex norm of Day [l ] given by 

[ co -11/2 

hl2 + ZI/^)|22-"J • 
It is easy to check that | | | • | | | also satisfies (2.4) (b) and (d). 

3. K-and T-norms. Of course, the properties studied in §2 are 
properties of both the norm and the given sequence. Singer [ó], [7], 
motivated by the earlier work of Nikol'skiï [2], [3], has called a norm 
with the property that {S'OxO} = B(r(x)i for all # £ £ and <rE2, an 
NK-norm (with respect to (xn)) and a norm with the property that 
{Sff(x)} = B0(x) for all x £ £ and <rGS, an iVT-norm. (This notation 
perhaps needs explaining: the N is for the Roumanian word for un­
conditional; the K is for the Russian word for canonical; and the T 
is for Cebysev!) In this language the results of the preceding section 
show that an iVT-norm is always an NK-norm and Example (2.5) 
shows that there exist iVX-norms which are not NT. 

If one no longer considers unconditional bases and considers only 
the sets crn= {l, 2, • • • , # } then there are four properties: (strictly) 
monotone and (strictly) comonotone analogous to those of (2.1). A 
theorem analogous to (2.4) is then valid for arbitrary bases. More 
precisely, a basis (xn) is strictly monotone if and only if {Sffn(x)} 
= B°n(x) and (xn) is strictly comonotone if and only if {Sffn(x)} =Bffn(x) 
for all # £ £ and for all w. A norm making the former (latter) true has 
been called by Nikol'skiï a 2£-norm (r-norm). 

In this general case the concepts are completely different. 
(3.1) EXAMPLE. A iT-norm which is non~T. 
Let E = {(xi)E(co): 5 j£ i |*.*-*»H-i| < + °° } with \\(xi)\\ given by 
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11(̂ )11 = £ I *.• - **+i I + 2 I *.-l2~*-

It is easy to check that £ is a Banach space (indeed isomorphic to lx) 
and that the unit vectors (en) form a conditional basis for E. I t follows 
from the triangle inequality that (en) is strictly monotone with 
respect to this norm and so || • || is a i£-norm with respect to (eH)< 

However, ||e*+$s|| =19 /8 and | |^ i+^2+^| | =15 /8 and so the norm 
is not even comonotone, i.e., || • || is non-T with respect to (en). 

(3.2) EXAMPLE. A T-norm which is non-K. 
Let E have the same members as (CQ) but with norm defined by 

| | (^) | | = sup <— £ | Xi\ + sup I xm\ > . 
ft çw V ft i—i m^fi+l / 

If | (xi) | denotes the usual norm of (c0) it is easy to see that 

\(Xi)\ g | | ( » i ) | | ^ 2 | ( * < ) | 

and so E is isomorphic to (c0). 
It is easy to check that the unit vector basis (en) of E is strictly 

comonotone and so | |- | | is a T-norm. (Indeed the above norm is a 
special case of the general T-norm constructed by Nikol'skiï [2].) 
However, H^i+^H HNi+^2+^11 = 2 and so || -|| is not strictly mono­
tone, i.e., || • || is non-K with respect to (en). 
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