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Let C be the space of real 27r-periodic continuous functions normed 
with the supremum norm. Let Pn denote the subspace of trigono­
metric polynomials of degree ^n. It is known [l] that the Fourier 
projection F of C onto P» is minimal; i.e., if A is a projection of C onto 
Pn then \\F\\ Û\\A\\. We prove that F is the only minimal projection 
of C onto P n . The proof is constructed by verifying the assertions 
listed below. Details will appear elsewhere. 

ASSERTION. If there exists a minimal projection different from F, 
then there exist minimal projections L and H, different from F such that 
$L+$H=F. 

The proof of this assertion utilizes Berman's equation, 

1 /•* 
F = — I T-±ATxdk, 

2irJ _» 
which is valid for any projection A of C onto Pn. Here T\ denotes the 
shift operator (Tyf)(x) =f(x+\). 

ASSERTION. There is a function K(x, t) of two variables such that 
(i) K(x, OGi 1 for each fixed x, 
(ii) K( •, /) EiPnfor each fixed t, and 
(iii) (Lf)(x)=ff(t)K(x,t)dt. 
This is proved by extending A to its second adjoint, and applying 

the Radon-Nikodym theorem to the functionals <j>(f) = (A**f)(x). 
Let Dn denote the Dirichlet kernel. The next assertion follows from 

an examination of the roots of K where K is considered as a function 
of x. 

ASSERTION. There is a function gÇzL1 such that 0^g^2, and 
K(x, t)=g(t)Dn(x-t). 

ASSERTION, (i) (1 — g) ±P2n and (ii) (1 — g)*\ Dn\ =0 where * denotes 
convolution. 
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Part (i) is immediate from the fact that L is a projection. The mini­
mality of L is needed to prove part (ii). 

Letd(», k)~f\D»(f)\eiktdt. 
ASSERTION. d(n, k) 9*0 for \ k\ >2n. 
This result, when combined with the preceding assertion, will prove 

the theorem. The remainder of this paper pertains to proving that 
d(n, k)^0. 

ASSERTION. 

1 *+• 1 0 ' - 1 

T j=k-n J P' + 1 

where @=e
2ril2n+1. 

ASSERTION. Ifd(n, k) = 0 then 
k+n 1 in 

Thus if d(n, i ) = 0 w e have a polynomial of degree 2n with rational 
coefficients which has /3 as a root. We next derive a relation which 
must be satisfied by the coefficients of such a polynomial. The final 
step is to show that in our case this relation is not even satisfied 
modulo a convenient prime. The existence of the convenient prime is 
a consequence of the following extension of the Sylvester-Schur 
theorem. 

ASSERTION. If n and k are integers satisfying 6^k^n/2, then at 
least two integers between n — k + 1 and n possess prime factors 
exceeding k. 
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