SCHAUDER DECOMPOSITIONS IN BANACH SPACES¹

BY WILLIAM J. DAVIS

Communicated by B. Yood, June 21, 1968

A sequence (M_i) of closed subspaces of a Banach space E is called a Schauder decomposition of $[M_i]$, the smallest subspace containing $\bigcup M_i$, if every element u of $[M_i]$ has a unique, norm convergent expansion $u = \sum u_i$, where $u_i \in M_i$ for $i = 1, 2, \cdots$. It is well known (see, e.g. [2]) that any sequence $(u_i) \subset E$ with $0 \neq u_i \in M_i$ for $i = 1, 2, \cdots$ is basic (i.e., a basis for its closed linear span). The converse of this statement is not true, but we do derive the following theorem, and mention several corollaries.

THEOREM. Let (M_i) be a sequence of closed subspace of the Banach space E such that each sequence $(u_i) \subset E$ with $0 \neq u_i \subset M_i$ is basic. Then there exists an integer N such that $(M_i|i \geq N)$ is a Schauder decomposition of $[M_i|i \geq N]$.

To simplify the proof of the theorem, we use the following characterization of Schauder decompositions due to Grinblyum [3]. A sequence (M_i) of closed subspaces of E is a Schauder decomposition of $[M_i]$ if and only if there exists a constant K such that for all integers n, m and all sequence (u_i) with $u_i \in M_i$, $\|\sum_{i=1}^{n} u_i\| \le K \|\sum_{i=1}^{n+m} u_i\|$. We note that this norm condition may be replaced by $\|\sum_{i=1}^{n} a_i u_i\| \le K \|\sum_{i=1}^{n+m} a_i u_i\|$ where the scalars (a_i) are also arbitrary. Since a sequence $U = (u_i)$ is basic if and only if there exists K = K(U) such that this last inequality holds for all (a_i) , m and n, we see that each (u_i) with $u_i \in M_i$ is basic if (M_i) is a Schauder decomposition.

Let $U = (u_i)$ be a sequence with $0 \neq u_i \in M_i$, and set $U_n = (u_i | i \geq n)$. Let $K(U_n)$ be the smallest constant such that $\|\sum_{i=n}^p a_i u_i\|$ $\leq K \|\sum_{i=n}^{p+q} a_i u_i\|$ holds for all $K \geq K(U_n)$, all (a_i) and integers p, q.

LEMMA. Let (M_i) be a sequence of closed subspaces of E such that each $U = (u_i)$ with $0 \neq u_i \in M_i$ is basic. Then there exists an integer N and a constant $K \geq 1$ such that every sequence U as above has $K(U_N) \leq K$.

PROOF. If K and N do not exist, then for each integer n and each $M \ge 1$, there exists a U with $K(U_n) > M$ (noting $K(U_{n+1}) \le K(U_n)$). Choose $U^{(1)}$ so that $K(U^{(1)}) > 2$. Then there exist integers $q_1 > p_1$ such that $\left\| \sum_{j=1}^{p_1} a_j u_j^{(1)} \right\| > 2 \left\| \sum_{j=1}^{q_1} a_j u_j^{(1)} \right\|$ for some sequence (a_i) . Similarly, there exist $U^{(2)}$ and $q_2 > p_2$ such that

¹ This work was supported by N.S.F. Grant Number GP-6152.

$$\left\| \sum_{j=q_1+1}^{p_1} a_i u_i^{(2)} \right\| > 4 \left\| \sum_{j=q_1+1}^{q_2} a_i u_i^{(2)} \right\|,$$

and in general we get $U^{(j)}$ and integers p_j , q_j such that $q_{j-1} < p_j < q_j$ and

$$\left\| \sum_{i=q_{i-1}+1}^{p_i} a_i u_i^{(j)} \right\| > 2^j \left\| \sum_{i=q_{i-1}+1}^{q_i} a_i u_i^{(j)} \right\|.$$

With these bounds, the sequence U defined by $u_i = u_i^{(j)}$ if $q_{j-i} < i \le q_j$ is not basic, which is a contradiction proving the lemma.

The theorem follows immediately from the lemma and the Grinblyum criterion.

To see that N is in general greater than 1, let E be separable, (x_i) a basic sequence in E such that codim $[x_i] = \infty$ and E_1 a closed subspace of E which is a quasicomplement but not a complement of $[x_i]$ in E. (For a construction of such an E_1 see Gurarii and Kadec [4].) If we set $M_1 = E_1$, $M_2 = [x_1]$, $M_3 = [x_2]$, etc., each sequence with just one element in each M_i is basic, but (M_i) is not a Schauder decomposition of E since $M_1 + [x_i] \subsetneq E$. In order to have N = 1, then, we must keep $[M_i \mid i < N]$ from being a quasicomplement of $[M_i \mid i \ge N]$ for each N. In fact, the addition of this hypothesis is also sufficient, for then we see that $[M_i] = M_1 \oplus M_2 \oplus \cdots \oplus M_{N-1} \oplus [M_i \mid i \ge N]$, and so (M_i) is a Schauder decomposition of $[M_i]$. These corollaries are now immediate. In each, we let U be an arbitrary sequence (u_i) with $0 \ne u_i \in M_i$, and call U a proper sequence.

COROLLARY. A sequence (M_i) of closed subspaces of E is a Schauder decomposition if and only if (a) $[M_i] = [M_i|i < n] \oplus [M_i|i \le n]$ and (b) each proper sequence U is basic.

COROLLARY. The previous corollary holds with (a) replaced by (a') $[M_i] = M_k \oplus [M_i | i \neq k]$ for each k.

COROLLARY. Let (M_i) be a sequence of finite-dimensional subspaces of E. Then (M_i) is a Schauder decomposition if and only if each proper sequence is basic.

It is easy to see that an N dimensional Banach space F has a basis $(f_i)_{i=1}^N$ such that

$$\left\| \sum_{i=1}^{p} a_{i} f_{i} \right\| \leq N \left\| \sum_{i=1}^{N} a_{i} f_{i} \right\|$$

1968]

always holds (using, for example, the result of Taylor [5]). The author does not know what the best bound that can replace N in general will be, but it must be greater than 1 (see, e.g. [1]). However, using the last corollary, and the N-bound above, we obtain:

PROPOSITION. Let dim $M_i \leq N$, $M_i \in E$ for $i = 1, 2, \dots$, and $[M_i] = E$. Set $N_j = \dim M_1 + \dim M_2 + \dots + \dim M_j$. The following are equivalent

- (a) (M_i) is a Schauder decomposition of E,
- (b) E has a basis (x_i) with $M_j = [x_i | N_{j-1} < i \le N_j]$,
- (c) each proper sequence is basic.

The proof of the proposition is a routine exercise.

PROBLEM. Does the previous result hold with the weaker assumption dim $M_i < \infty$?

REFERENCES

- 1. F. Bohnenblust, Subspaces of $l_{p,n}$ spaces, Amer. J. Math. 63 (1941), 64-72.
- 2. D. Dean, Schauder decompositions in (m), Proc. Amer. Math. Soc. 18 (1967), 619-623.
- 3. M. M. Grinbylum, On the representation of a space of type B in the form of a direct sum of subspaces, Dokl. Akad. Nauk SSSR (N.S.) 70 (1950), 749-752. (Russian)
- 4. V. I. Gurarii and M. I. Kadec, Minimal systems and quasicomplements in Banach space, Dokl. Akad. Nauk SSSR 145 (1962), 256-258=Soviet Math. Dokl. 3 (1962), 966-968.
- 5. A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), 614-616.

OHIO STATE UNIVERSITY