ON THE GROWTH OF f(g)
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It is well known [1] that if f and g are transcendental and entire,
then

1 T(r, f(@))/T(r,f) >  asr— .

It is reasonable to conjecture that (1) remains valid when f is as-
sumed to be meromorphic instead of entire. (Here and in the sequel
it is assumed that the reader is familiar with the Nevanlinna func-
tions T'(r, f), N(r, f), m(r, f), etc.)

Using some results of Edrei and Fuchs [2] one can easily verify
for any given €>0 that

@ T(, () > 1—;— T, 7)

for sufficiently large 7 and for certain families of functions {f} and
{g}. For example (2) holds when g is transcendental of finite order
and f is transcendental and meromorphic with at least two zeros.

One can also derive other weak results of this type out of Nevan-
linna’s second fundamental theorem. It seems, however, that any-
thing stronger must be derived from something somewhat more pre-
cise than Nevanlinna's theorem.

In this note we show how an extension of the second fundamental
theorem can be used to prove (1) for a large class of meromorphic
functions g.

Nevanlinna’s theorem can be made more precise [3] as follows:

THEOREM 1. Suppose f(2) is a nonconstant meromorphic function with
f(0)50, . For any sequence ai, as, + * - , lai| é[a,—.,.l[, with a;#f(0),
let &(k) =minimum of the distances between the first k points of the
sequence. Then for every k=2,

(k= DT(,) S Nirf) + SN ( f#)

f=1 — a;
3) - {zzv(r,f) + zv<r, %) - N

+ dklog r + r(k — 1) log (1/4(k))
+ O(log rT(r, f))
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for all v in S(k) outside a set Eo of r of finite measure. Ey and
O(log (rT(r, f)) do not depend on k. Here S(k) = {r; r> ] akl } and ¢’ is
a constant.

Note that the term involving & log k£ which we find in Nevanlinna’s
remainder [4] does not appear in (3).
Using Theorem 1 one can easily prove

THEOREM 2. Let f(2) be a transcendental meromorphic function such
that f(0)#0, «. If a discrete set

S = {ay a5}, a; # f(0),
with three or more elements satisfies for some ¢,
é(n(r,S)) = rt
for a set, E, of r of infinite measure, then for every >0,
n(r, f718)) 2 (1 — n(r, $)—2)T(r, f)/log r

for all v in E outside a set of finite measure. Here n(r, S) denotes the
number of elements of S in |z| =r.

We are now ready to prove

THEOREM 3. Let f be meromorphic, transcendental and such that for
three distinct numbers A;, 1=1,2, 3

8(n(r, f1(49))) 2 r

for some t and for all r outside a set of finite measure. If g is transcen-
dental and such that g(0)€&Ef1(4:); <=1, 2, 3, then (1) holds as r
approaches infinity outside a set of finite measure.

Proor. We may assume without any loss of generality that g(0) 0.
It follows from Theorem 2 that for any given real number K and any
function g and set .S satisfying the hypotheses of Theorem 2

(4) n(r, g1(S)) > Kn(r, S)

for all sufficiently large 7 outside the exceptional set. The measure of
the exceptional set does not depend on K.

We use (4) to find the relationship between N(r, 1/(f(g) —A4.)) and
N(@,1/(f—4,)); <=1, 2, 3, that we need for the proof.

Let S;=f"1(4;). Then f(g(3)) =4; if and only if 2&g~*(S;). Thus
it follows from (4) that

5) n(r, }Eg)—l——_A—.) > Kn (r, ;—_I—A)
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Thus N(r, 1/(f(g) —4:))>KN(r, 1/(f—4.)) outside a set of » of

finite measure. By applying Nevanlinna’s second fundamental theo-
rem, we obtain for any ¢>0

(6) I(r, f(g)) >

a - 9 K10, )

outside a set of r of finite measure and our theorem follows.
A similar but somewhat more elaborate argument can be used to
prove the more general:

THEOREM 4. If f and g are as in Theorem 3 and p is any polynomial,
then

I(r, f())/ T(r, f($)) =

outside a set of r of finite measure.

p in Theorem 4 can probably be replaced by any entire function
whose growth compared to that of g is sufficiently small.
As an immediate consequence of Theorem 4 we have

CoroLLARY 1. If f and g are as in Theorem 4 and

Q) f@ = f(#),
where p is a polynomial, then g is a polynomial of the same degree as p.

COROLLARY 2. If f is meromorphic, iranscendental and of finite order
and if p and g are as in Theorems 3 and 4, then the conclusions of Theo-
rems 3 and 4 remain valid.

Proor. We need only note that when f is of finite order, it satisfies
the hypotheses of both theorems.

Proor. It follows from Theorem 4 that g is a polynomial. The fact
that it has the same degree is proved in [5].

The solutions g of (7) are known when f is entire (see [5]). It is not
even known, however, whether the above corollary is true for arbi-
trary mermomorphic f.

Added in Proof. REMARK. Subsequent to the completion of this
paper J. Clunie completed a rather extensive study on this and related
problems. His results should appear soon in Mcintyres Memorial
Volume (University of Ohio).
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Page 508: The third formula should read:
oMA® + 4*®Q® + 0@ = 0.
Page 509: Equation (3) should read:
QAW + A*1Q®) + 0@ = O.
Page 509: The first formula in the proof of Theorem 1 should read:

d
(£) cewso,50)
= (QWa(t, 2() + - - -
— (100 + -+ -
Page 510: The first line should read:
0.(t) = X*(r, )X(r, ) + X*(r, ) X(r, ©).
Page 510: The second equation in the second remark should read:

y(@) = [POA@GP() + POP(H)]y@®) = BE)y(®).



