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Our purpose here is to announce new theorems on the eventual 
uniform-asymptotic stability (hereafter called EvUAS) of the origin 
0 for the ordinary differential equation 

(P) at « ƒ(*, x) + g(tf *), (xt - dx/dt) 

given that 0 is EvUAS for the equation 

(E) x' -ƒ(*,*), 

and that ƒ and g satisfy certain conditions. We always assume that ƒ 
and g are at least continuous from [0, oo)X-Rd to Rd, but we never 
assume that the solutions of (P) are unique or that the zero function 
is a solution of (P). In fact EvUAS is a natural generalization of uni­
form asymptotic stability in which it is not assumed that the zero 
function is a solution. 

Our main result is (definitions follow) 

THEOREM A. Let 0 be EvUAS for (E). Then 0 is EvUAS for (P) if 
(i) ƒ is Lipschitz and g is diminishing, or 
(ii) ƒ is periodic and g is diminishing, or 
(iii) ƒ is inner product and g is absolutely diminishing, or 
(iv) ƒ is linear and g=gi+g2> where gi is absolutely diminishing and 

g2 = o(\x\). 

Let x(t; to, Xo) denote a solution of (E) through (to, Xo). We say that 
0 is EvUAS for (E) if 

lim [sup | x(t\ to, Xo) | ] = 0 
<O-K»; |*O| -+0 t^to 

and if, for some 80 > 0 and some a0 è 0, 

lim [ sup | x(t + to) to, xo) | ] = 0. 
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We say that ƒ is Lipschitz if, for some r>0 and L>0f 

l/G, * ) - ƒ ( * , ? ) I £L\x-y\ f o r / ^ 0 , \ x\ £ r, and | y | g r; 

inner product if, for some r > 0 and L > 0, 

<^—y,/a ^ ) - / a y ) > ^ ^ l h - ^ I I 2 f o r /£0 , | * | g r , and | y | SSr; 

linear if 

ƒ(/, s) = 4(*)s for / è 0 and a? G #*; 

and periodic if, for some co>0, 

f{t + co, a) = ƒ(*, #) for / ^ 0 and x G £<*. 

Note that if A(t) is bounded on [0, oo), then ƒ(t, x)~A{t)x is both 
linear and Lipschitz; that ƒ is periodic if it is independent of /; and 
that a Lipschitz function is also inner product. 

We say that g is absolutely diminishing if, for some r>0 and every 
m satisfying 0<m<rt there exists a function hm such that, for all 
teO and m^ \x\ ^ r , 

/

H-l 

hm(s)ds ~-> 0 as / —> oo. 

We say that g is diminishing if: (i) g is absolutely diminishing; or 
(ii) g is continuous in x uniformly with respect to / G [0, oo) and, for 
some r>0 and each fixed x satisfying 0 < | x\ <r, 

I f t+U 
I g(s, x)ds 

J t 

0 as / —> oo : 

or (iii) g is a finite sum of functions of types (i) and (ii). 
Theorem A generalizes the following result, obtained in stages by 

Malkin [3, p. 104], Vrkoc [7], Wexler [8], Yoshizawa [9], Krasovskii 
[4, p. 102], LaSalle and Rath [5], and Strauss and Yorke [ó] : 

THEOREM. If 0 is UAS for (E), iff is Lipschitz1 and if gis absolutely 
diminishing, then 0 is EvUASfor (P). 

Theorem A also generalizes the following result, obtained in stages 
by Poincaré, Liapunov, Perron, Coddington and Levinson [2, p. 327], 
Brauer [ l ] , and Strauss and Yorke [ó]: 

THEOREM. Let A be a constant matrix. If 0 is UAS for x' — Ax and if 
g = gi+g2, where g\ is absolutely diminishing {but with m~0) and 
#2 = o{\ x\ ), then 0 is ^eventually asymptotically stable" for (P). 
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There do not seem to be any results in the literature for ƒ merely 
periodic or inner product, 

We now briefly discuss diminishing functions. If \g(t, x)\ ^h(t) for 
all t^O and \x\ g r , then g is absolutely diminishing whenever, in 
particular, h(t)-±0 as t—»oo or 

ƒ | h{t) \pdt < oo for some p è 1. 
o 

The scalar function g(t, x)=*t(t2x2 + l)-1 is absolutely diminishing 
because we may choose 

hm(t) « t(t2m2 + l ) - 1 -> 0 as / -» oo ; 

however, g(t> 0 ) = / . Thus an absolutely diminishing function need 
not be small at x = 0. The function 

*(/) = (/ sin *8, / cos t\ 0, • • • , 0) 

is diminishing but not absolutely diminishing, since \\h(t)\\ =L Fur­
thermore, t~lh{t) is bounded and diminishing, but not absolutely 
diminishing. If k(x) is continuous from Rd to Rd (we need not have 
&(0)=0), then the function k(x) sin tz is diminishing but not abso­
lutely diminishing. Examples show that if uniform continuity is 
dropped from the definition of a diminishing function, then part (i) 
of Theorem A may fail. 

We now summarize some of our other results. 

THEOREM B. Let 0 be EvUASfor (E). Let ƒ be Lipschitz or periodic. 
ThenOisEvUASfor 

(1) ^ -ƒ (* ,* ) + *(*) 

if and only if h is diminishing. In fact if h is not diminishing, then no 
solution of (1) can approach zero as t-**>. 

Both implications of Theorem B are false lor inner product ƒ and 
for linear ƒ. Furthermore, there exist diminishing functions g and 
there exist functions ƒ which are both inner product and linear such 
that 0 is EvUAS for (E) but not for (P). 

To understand better the relationship between properties of ƒ in 
(E) and the conditions for admissible perturbations g, we use the 
concept of perturbation classes. Define 

^c = {f(t, x):fis continuous from [0, oo) X Rd to Rd). 
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Let ^ be a subclass of £Fc. Define the perturbation classes 

g(3F) = { j G 5b: V / G ff, 0 is EvUAS for (E) =* 0 is ËvUAS for (P)}, 

3C(30 = { i G 90*0* h is independent of #}. 

Then if ö^ip denotes the class of Lipschitz functions, Sinn the class of 
inner product functions, ÊFun the class of linear functions, and JFper 

the class of periodic functions, we may restate Theorem A as 

g^Lip) D {g(t, x)lgis diminishing}, 

S(^Per) D {g(t, x):gte diminishing}, 

9(^inn) D {g(t, x)lgh absolutely diminishing}, 

QO^Lin) D {gi + ga'.giis absolutely diminishing andg2 = o(\ X\ )}» 

Theorem B implies 

SCOFLÎP) = OC^Per) = {h(t):h is diminishing}. 

The remarks following Theorem B imply 5C(3rLiP)?
é5C(3rLin) and 

5C(^Lip)^3C(^nn). 
The conditions we impose on g are that g be "small as /-^oo." We 

can use conditions of the type ug is small as | x\ —>0" and still perturb 
every equation (E) for ƒ linear, but not for ƒ Lipschitz, inner product, 
or periodic, as Theorem A and the next result show. 

THEOREM C. Let d*z2. Then we have the following: 

for Lipschitz g(x), g G 9(^1^) <=> g(x) = 0 near x = 0; 

for Lipschitz g(x), g G 9(^inn) <=> g(x) ss 0 near x = 0; 

for continuous g(x), g G 9(^Per) <=> g(%) = 0 near x = 0; 

for a constant matrix A, Ax G 9(^Lin) <=> Ax = ax for some a ^ 0. 

Finally, we show that restrictions on ƒ (such as Lipschitz, etc.) are 
needed in order to prove a result like Theorem A. Let ^cu be the class 
of functions which are locally Lipschitz and uniformly continuous on 
[0, «>)XRd. 

THEOREM D. For sornef&cv, 0 is EvUAS for (E) but not for 

*f=f(t,x) + *-*(l, • • - , ! ) . 

Also, for sontefÇz$cv, 0 is EvUAS for (E) but not for 

In particular, then, e~'(l, • • • , lJ^gC^cu) andxe-tQçiïïcv)* 
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