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1. Introduction. Let x = (xu • • • , xn) and D = (Dh • • • , Dn) 
where Di<t>(x)=d<t>(x)/dxi. Let D« = D?D? • • • D%n and let P(x, D) 
= 2«;o*i«ism aa(x)Da where | a | = a i + • • • +«n and the aa(x) are 
given functions of x. Finally, let S(x) = 0 denote a cylindrical surface 
in (x, t) space and B(x, D) a non tangential boundary operator whose 
domain is the manifold S(x) = 0. The smoothness required of S(x) = 0 
will depend upon the operator B(x, D). We will be concerned with 
the following pair of initial-boundary value problems: 

Pi 

ldu(x, t)/dt = P(x9 D)u(x9 /), t > 0, 

lu(x9 0) = 4>{x), 

[B(x, D)U(X9 t) = f(x, t)9 x G 5, / > 0 

and 

P2 

fdM*> *)/#* = P(x9 D)v(x, t), t > 0, 
z>(#, 0) = 0, vt(x, 0) = <£(#), 

[B(x, D)v(x, t) = g(o?, fl, ^ G 5 , / > 0 . 

We assume that -B (x, Z>)# (#) vanishes on S(x) = 0 and that P (x, Z>)0 (#) 
is continuous. 

The interest in this paper will be in relating the solvability of P2 to 
Pi and conversely by means of the Laplace transform and the inverse 
Laplace transform. The use of the Laplace transform will necessarily 
impose restrictions on the choices of the f unctions ƒ (x, t) and g(x, t), 
but these conditions are satisfied in a wide class of applications. By 
the symbolism £71{^(x» s)}»-*2 we understand the inverse Laplace 
transform with the variable 5 in the transform and the variable t2 

in the inverted function. We then have the following results: 

THEOREM 1. If Pi is solvable with solution u(x, t) and if 

(1.1) g(x, t) - r (3 /2)£rV 8 / 2 / (* . 1/4»)}.-*, 

then P2 is also solvable and 

(1.2) »(*, *) = T(3/2)£71{s-*'*u(x> 1/4*)},,,2 

provided the inverse Laplace transform exists in (1.1) and (1.2). 
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THEOREM 2. If P2 is solvable with solution v(x, t) and if 

(1-3) ƒ(*, 0 = r -A-r f V»''4I«<*, 0<fc 

tótfw Pi w solvable and 

(1.4) «(*, 0 = — ^ r r f V*f/UK*, Ö^ 
2vV/3 /2*/o 

provided the integrals exist in (1.3) awrf (1,4) /or £>Q. 

The cases of Px and P2 that are usually of interest are those in which 
P(x, D) is an elliptic operator having a positive definite form. Then 
the equations in Pi and P2 are, respectively, parabolic and hyper­
bolic. Although the initial value problem in P2 is not well posed if 
P(x, D) is an elliptic operator having a negative definite form, certain 
boundary problems related to this operator conveniently fit into our 
description. From the standpoint of applications, the uses of The­
orems 1 and 2 are clear. A problem P2 (or Pi) that is complicated may 
be transformed into a more easily solved problem Pi (or P2). Applica­
tions of these results will, however, be deferred to a later paper. 

2. Proofs of Theorems 1 and 2, Through transformations of vari­
ables and the introduction of the Laplace transform, it will be shown 
that problems Pi and P2 can be reduced to the same problem. 

Introduce the change of variables u(x, t)~u*(x, t)+cf>(x) and 
v(x, t)=v*(x, t)+tc/)(x), respectively, in Pi and P2. Then Pi and P2 
transform, respectively, into the problems 

1 ƒ**(*, ') =* P(%, D)u*(x, t) + P(x, D)(f>(x) ; u*(x, 0) « 0, 
1 (B(x, D)u(x, t) \s = ƒ(*, t) (since B(x, D) 4>{x) = 0 on 5), 

and 

[»«(*, t) » P(x, D)v (*, 0 + tP(x, D)4>(x), 

Pi|w*(*, 0) = 0, v*(x, 0) = 0, 

[B(x, D)v\x, t) \s « g(x, t). 

In Pg, introduce the change of variables /=r 1 / 2 . Then Pj becomes 

4TT>* + 2vt = P(x, D)v*(xy r1'2) + rl'*P(x, D)<t>(x), 

P2
21 

v*(x, 0) = 0, Hm v*(xt r1 '2) « 0, 
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Now introduce the Laplace transform in P2 by transforming on the 
variable r with transformed variable s> Then $*(x, s)> the Laplace 
transform of v*(x, r1/2), satisfies the problem 

f à r(3/2) 
a Us2 — v*(x,s)+6sv*(x,s)+P{x, D)v*(x,s)-)—^—P(x9 D)<l>(x)~0, 

P2j ds szl2 

{B(x,D)v*(x,s)\s = g(x,s), 

with g(x, s) the Laplace transform of g(x, r1/2). Finally, a multiplica­
tion of the equation and conditions in P | by szl2/T (3/2) leads to the 
problem 

P. 

f d ( sz/2v* ) ( sz,2v* ) 
Us2 — ! > + P(x, D) { > + P(x, D)<t>(x) = 0, 

i4[ d*lr(3/2)/ K' lr(3/2)/ JVKJ 

( szl2 ) I s8'2 

B(x, D) { v*(x, s)>\ = — g(x, s). 
K ' lP(3/2) V ' 'f\s T(3/2) *V ' 

In Pj, introduce the change of variables / = l/(4$) for s>0. Then 
Pj transforms into the problem 

PÎ 
4*2 — «*(*, 1/4*) + P(x> D)u*(x, 1/4$) + P(x, D)4>(x) - 0, 

ds 

lB(«, £)«*(*, 1/4$) \s = ƒ(*, 1/4*) 

with lim^oo u*(x, 1/4$) = 0. 
A comparison of Pj and Pi shows that the functions u*(xf 1/4$) 

and s*i2(v*(xt s)/T(S/2)) satisfy (i) the same differential equation and 
(ii) the same boundary conditions provided that 

s 
8/2 

(a) f(x, 1/4$) = g(x. $), 
(2.1) \ J J\ > / > r ( 3 / 2 ) 5 V ' 

(b) lim s^H\x, s) = 0. 

The conditions (2.1a) are those covered by the hypotheses (1.2) and 
(1.4). Imposing these conditions along with (2.1b), we get 

(2.2) **(*, s) = r(3/2)r-3%*(x, 1/4$), 

and the result (1.1) follows by inversion and our definitions of u* and 
p*. The result (1.3) also follows from (2.2). This completes the proof. 

The requirement that <t>(x) be such that P(x, D)<p(x) is continuous 
is not necessary. By mollifying #(x) or interpreting P(x, D)<j>(x) in the 
sense of distributions, the continuity requirements can be weakened. 
Also observe that the method of proof only depended upon the linear-
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ity and t independence of the operator P(xt D). This permits P to be 
a quite general operator. Finally, if Pi and P2 reduce to initial value 
problems, a similar argument is applicable. In this case, conditions 
on the known function u(x, t) (or v(xf t)) can be imposed on the un­
known function v(x, t) (or u(x, t)). With no boundary conditions on 
u and v, it is no longer necessary to require that <t>{x) satisfy a bound­
ary condition. 
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1. Introduction. Suppose that K is a ^-dimensional compactum in 
the interior of a topological g-manifold Q, q — k è 3. Following Hempel 
and McMillan [3], we say that K is locally nice in Q if Q—K is 
1-ULC. Similarly, an embedding/: K—>Int Q is said to be locally nice 
if Q-f(K) is 1-ULC. 

In [l ] the authors showed that a locally nice embedding of a com­
pact fe-dimensional polyhedron K into Int Qt where Q is a PL g-mani-
fold, is e-tame whenever g à 5 and 2k+2^q. In this announcement 
we outline the proof that the same is true for embeddings in codimen-
sion at least three if K is a compact PL manifold. Specifically, our 
main result is 

THEOREM 1. Suppose that M and Q are PL manifolds of dimen­
sions m and q, respectively, with M compact, g â 5 , and g - m ^ 3 , and 
ƒ: Af—>Int Q is a locally nice embedding. Then f is e-tame. 

The following two corollaries serve to demonstrate the usefulness 
of Theorem 1 as applied to some special locally nice embeddings. 

COROLLARY 1.1. Suppose that P is a locally tame (q — \)-complex in 
the PL q-manifold Q} q^5y and M is a compact PL m-manifold in 
Int Q, q—wè3, such that M—P is locally tame. Then Mis e-tame. 

1 This research was supported in part by NSF grant GP-5458. 


