WIENER-HOPF OPERATORS AND ABSOLUTELY CONTINUOUS SPECTRA. II

BY C. R. PUTNAM1

Communicated by Maurice Heins, November 1, 1967

1. This paper is a continuation of [4]. It may be recalled that if A is a self-adjoint operator on a Hilbert space $\mathfrak F$ with spectral resolution $A=\int \lambda dE_{\lambda}$, then the set of elements x in $\mathfrak F$ for which $||E_{\lambda}x||^2$ is an absolutely continuous function of λ is a subspace, $\mathfrak F_a(A)$, of $\mathfrak F$ (see, e.g., Halmos [1, p. 104]). The operator A is said to be absolutely continuous if $\mathfrak F_a(A)=\mathfrak F$. As in [4], both spaces $L^2(0,\ \infty)$ and $L^2(-\infty,\ \infty)$ will be considered, but the underlying Hilbert space for the integral operators T and A occurring below will be $\mathfrak F=L^2(0,\ \infty)$.

As in [4], let k(t) on $-\infty < t < \infty$ satisfy

(1)
$$k \in L^1(-\infty, \infty) \cap L^2(-\infty, \infty)$$
 and $k(-t) = \bar{k}(t)$,

and let $K(\lambda)$ denote the (real-valued) function

(2)
$$K(\lambda) = \int_{-\infty}^{\infty} k(t)e^{i\lambda t}dt, \quad -\infty < \lambda < \infty.$$

If the (bounded) operator T on \mathfrak{F} is defined by

(3)
$$(Tf)(t) = \int_0^t k(s-t)f(s)ds, \qquad 0 \le t < \infty,$$

then the self-adjoint operator $A = T + T^* = 2\text{Re}(T)$ is given by

(4)
$$(Af)(t) = \int_0^\infty k(s-t)f(s)ds.$$

There will be proved the following

THEOREM. If k(t) satisfies (1) and if $k(t) \not\equiv 0$ (a.e.) on $-\infty < t < \infty$, then the self-adjoint operator A of (4) is absolutely continuous and its spectrum is the closed interval

(5)
$$\operatorname{sp}(A) = [\inf K(\lambda), \sup K(\lambda)],$$

where $K(\lambda)$ is defined in (2).

In [4] the absolute continuity of A was established under the hypothesis that $K(\lambda) \neq 0$ a.e. According to the above Theorem how-

¹ This work was supported by a National Science Foundation research grant.

ever, this property holds provided only that $K(\lambda) \not\equiv 0$, equivalently, that $k(t) \not\equiv 0$ a.e. In other words, A is absolutely continuous except in the trivial case A=0. (Similar assertions hold for self-adjoint Toeplitz operators; see [3, pp. 132-133] for a discussion and references.)² The relation (5) can be deduced from a theorem given in Krein [2, p. 224], concerning Wiener-Hopf operators on the half-line. However, this fact, as well as the assertions of the above Theorem concerning the absolute continuity, will be derived as consequences of general results on hyponormal operators on a Hilbert space and which are contained in the following

LEMMA. Let T be a bounded operator on a Hilbert space \$\sigma\$ and let

$$(6) T^*T - TT^* = C, C \ge 0.$$

If $A = T + T^*$ then $\mathfrak{F}_a(A)$ contains the smallest subspace, \mathfrak{M}_T , of \mathfrak{F} which reduces T and which contains the range of C. Moreover, the spectrum of the real part of T (that is, of $\frac{1}{2}A$) is the projection onto the real axis of the spectrum of T.

The proof of the Lemma can be found in [3, pp. 42-43, 46-47]. The proof of the absolute continuity assertion of the Theorem will be given in §2 and that of (5) in §3.

2. It will be convenient to recall a part of the argument given in [4]. It was noted there that relation (6) holds for T of (3) on $\mathfrak{F}=L^2(0, \infty)$ with $C=B^*B$ and $(Bf)(t)=\int_0^\infty k(t+s)f(s)ds$. For $f\in L^2(0, \infty)$, put $\widehat{f}(\lambda)=\int_0^\infty e^{-i\lambda t}f(t)dt\equiv F_-(\lambda)$ and $F_+(\lambda)=\int_0^\infty e^{i\lambda t}f(t)dt$ and let R_+ and R_- denote the orthogonal subspaces of $L^2(-\infty, \infty)$ consisting of the elements F_+ and F_- respectively. (Note that $R_+[R_-]$ can be regarded as the space of Fourier transforms of elements in $L^2(-\infty, \infty)$ which are 0 on the right [left] half-line.)

As in [4], if the space \mathfrak{M}_T of the Lemma is not \mathfrak{F} , then there exists a function $q \in \mathfrak{F}$, $q \neq 0$ (that is, $q(t) \neq 0$ a.e. on $0 \leq t < \infty$) such that $q \perp \mathfrak{M}_T$. (It will be shown below that necessarily A = 0 in this case.) If $Q = Q(\lambda) = \int_0^\infty e^{-i\lambda t} q(t) dt$ ($\in R_-$), then, as was shown in [4], $Q \perp \overline{K}_+^n R_+$, $n = 0, 1, 2, \cdots$, where

² Added in proof. It follows from a result of M. Rosenblum (Self-adjoint Toeplitz operators, 1965 Summer Institute in Spectral Theory and Statistical Mechanics, Brookhaven National Laboratory, Upton, New York) that the above A is unitarily equivalent to a self-adjoint Toeplitz matrix. The absolute continuity of A as well as the assertion (5) can then be deduced from the corresponding properties of Toeplitz operators; cf. [3] for a further discussion. This unitary equivalence is not used in the methods of the present paper however.

(8)
$$K_{+}(\lambda) = \int_{0}^{\infty} e^{i\lambda t} k(t) dt.$$

Since $Q \perp R_+$, it follows that

(9)
$$Q \perp (\text{Re}(K_+))^n R_+$$
 and $Q \perp (\text{Im}(K_+))^n R_+$ for $n = 0, 1, 2, \cdots$.

Only the first relation of (9) was exploited in [4], where it was shown that, as a consequence, $Q(\lambda) = 0$ a.e. on the set for which $Re(K_{+}(\lambda)) \neq 0$. The same argument (involving Weierstrass' approximation theorem) shows however that $Q(\lambda) = 0$ a.e. also on the set for which $\operatorname{Im}(K_{+}(\lambda)) \neq 0$. Since $q(t) \neq 0$ a.e. on $0 \leq t < \infty$, then $Q(\lambda) \neq 0$ a.e. on $-\infty < \lambda < \infty$, and hence $K_{+}(\lambda) = 0$ on a set of positive measure. However, since $k \in L^1(-\infty, \infty)$, $K_+(\lambda)$ is the boundary function of a function $K_{+}(z) = \int_{0}^{\infty} e^{izt} k(t) dt$ analytic in the upper half-plane Im(z) > 0 and bounded and continuous on $Im(z) \ge 0$. If the half-plane $Im(z) \ge 0$ is mapped onto the unit circle $|w| \le 1$ by the linear fractional transformation w = (z-i)/(z+i), one then obtains a function $K_{+}(z(w))$ analytic in |w| < 1, bounded on $|w| \le 1$, and continuous on $|w| \le 1$ except possibly at $w(\infty) = 1$, and which is 0 on the boundary |w|=1 on a set of positive measure. It follows from the classical theorem of F. and M. Riesz [5] that this function must be identically 0 and hence, in particular, that $K_{+}(\lambda) \equiv 0$ on $-\infty < \lambda < \infty$. Hence $K(\lambda) = 2\text{Re}(K_{+}(\lambda)) \equiv 0$ and so $k(t) \equiv 0$ a.e., that is, A = 0. This completes the proof of the first portion of the Theorem.

3. To prove (5), let z satisfy 0 < |z| < 1 and put $\lambda = \int_0^\infty k(t) z^t dt$. (Here $z^t = e^{t \log z}$ where $\log z$ denotes any value of the logarithm function.) If $f(t) = z^t$, then $f \in \mathfrak{F}$ and one has

(10)
$$(T^*f)(t) = \int_{-\infty}^{\infty} k(s-t)z^s ds = \int_{0}^{\infty} k(s)z^{t+s} ds = \lambda f(t).$$

Thus the range of $\int_0^\infty k(t)z^t dt$, for 0 < |z| < 1, belongs to the spectrum, even the point spectrum, of T^* . (This fact and its derivation (10) are analogous to corresponding results for Toeplitz matrices, with the integrals replaced by power series, due to Wintner [6]; cf. also [3, p. 129].) Since the spectrum is a closed set, it follows that $K_+(\lambda)$ of (8) is in the spectrum of T^* for all real λ . Since $K(\lambda) = K_+(\lambda) + \overline{K}_+(\lambda)$, it follows from the second part of the Lemma that the interval [inf $K(\lambda)$, sup $K(\lambda)$] is certainly contained in the spectrum of $A = T + T^*$. (Only this much of the Lemma will be needed here.) On the other hand, as was shown in [4], $(Tf)^{\hat{}}(\lambda) = \overline{K}_+(\lambda)\hat{f}(\lambda)$ and so, by the Parseval relation,

$$(Af,f) = (Tf,f) + (\overline{Tf,f}) = \int_{-\infty}^{\infty} K(\lambda) |\hat{f}(\lambda)|^2 d\lambda.$$

Hence, the spectrum of A is clearly a subset of $[\inf K(\lambda), \sup K(\lambda)]$ and the relation (5) is proved.

REFERENCES

- 1. P. R. Halmos, Introduction to Hilbert space, Chelsea, New York, 1951.
- 2. M. G. Krein, Integral equations on a half-line with kernel depending upon the difference of the arguments, Amer. Math. Soc. Transl. 22 (1962), 163–288.
- 3. C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Math. 36, Springer, Berlin, 1967.
- 4. ——, Wiener-Hopf operators and absolutely continuous spectra, Bull. Amer. Math. Soc. 73 (1967), 659-662.
- 5. F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quat. Cong. des Math. Scand., Stockholm (1916), 27-44.
- 6. A. Wintner, Zur Theorie der beschränkten Bilinearformen, Math. Z. 30 (1929), 228-282.

PURDUE UNIVERSITY