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1. This paper is a continuation of [4]. It may be recalled that if A 
is a self-adjoint operator on a Hubert space § with spectral resolution 
A=zf\dE\, then the set of elements x in § for which ||-Ex#||2 is an 
absolutely continuous function of X is a subspace, &a(A), of § (see, 
e.g., Halmos [l, p. 104]). The operator A is said to be absolutely 
continuous if §0(^4)~§. As in [4], both spaces i2(0, oo) and 
i2(— oo, oo) will be considered, but the underlying Hilbert space for 
the integral operators T and A occurring below will be §=Z 2(0, oo). 

As in [4], let k(t) on •— 00 < / < 00 satisfy 

(1) kEL1(-oo9 00) HZ, 2 ( -00, 00) and * ( - 0 - J E ( 0 , 

and let KÇK) denote the (real-valued) function 

ƒ 00 

k(f)e**dt, - 0 0 < \ < 00. 

If the (bounded) operator T on § is defined by 

(3) (Tf)(t) = f k(s- t)f(s)ds, 0 S t < 00, 
J 0 

then the self-adjoint operator A = T+T* = 2Re(T) is given by 

(4) (4f)(0= f°Ks-t)f(s)ds. 

There will be proved the following 

THEOREM. If k(t) satisfies (1) and if k(t)^0 {a.e.) on — 00 < / < 00, 
then the self-adjoint operator A of (4) is absolutely continuous and its 
spectrum is the closed interval 

(5) sp(4) = [infX(X),supü:(X)], 

where KÇK) is defined in (2). 

In [4] the absolute continuity of A was established under the 
hypothesis that K (X)T^O a.e. According to the above Theorem how-
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ever, this property holds provided only that K(k)f£0, equivalently, 
that k{t)^0 a.e. In other words, A is absolutely continuous except 
in the trivial case A=0. (Similar assertions hold for self-adjoint 
Toeplitz operators; see [3, pp. 132-133] for a discussion and refer­
ences.)2 The relation (5) can be deduced from a theorem given in 
Krein [2, p. 224], concerning Wiener-Hopf operators on the half-
line. However, this fact, as well as the assertions of the above The­
orem concerning the absolute continuity, will be derived as conse­
quences of general results on hyponormal operators on a Hilbert 
space and which are contained in the following 

LEMMA. Let T be a bounded operator on a Hilbert space § and let 

(6) T*T ~ TT* ~ C, C è O. 

If A = T+T* then fQa(A) contains the smallest subspace, 3)îr, of § 
which reduces T and which contains the range of C, Moreover, the spec­
trum of the real part of T {that is, of f-4) is the projection onto the real 
axis of the spectrum of T. 

The proof of the Lemma can be found in [3, pp. 42-43, 46-47]. 
The proof of the absolute continuity assertion of the Theorem will be 
given in §2 and that of (5) in §3. 

2. It will be convenient to recall a part of the argument given in 
[4]. It was noted there that relation (6) holds for T of (3) on 
§ = £2(0, 00) with C=B*B and {Bf){t)=fîk{t+s)f{s)ds. For 
fELHQ, * ) , put fo)=fte-*f(t)dt**F-Qi) and F+Q<) = fie**f{t)dt 
and let i?+ and i?- denote the orthogonal subspaces of £2(— 00, 00) 
consisting of the elements F+ and F-. respectively. (Note that R+ [R-] 
can be regarded as the space of Fourier transforms of elements in 
£2( — 00, 00) which are 0 on the right [left] half-line.) 

As in [4], if the space 9Ky of the Lemma is not §, then there exists 
a function g £ § , q&Q (that is, q{t)^0 a.e. on 0^t< <*>) such that 
q JLSJfo. (It will be shown below that necessarily A —0 in this case.) 
H Q « G(X) =fZe~iUq{t)dt (G-K-), then, as was shown in [4], Q ±K"+R+, 
w = 0, 1, 2, • • • , where 

2 Added in proof. It follows from a result of M. Rosenblum (Self-adjoint Toeplitz 
operators, 1965 Summer Institute in Spectral Theory and Statistical Mechanics, 
Brookhaven National Laboratory, Upton, New York) that the above A is unitarily 
equivalent to a self-adjoint Toeplitz matrix. The absolute continuity of A as well as 
the assertion (5) can then be deduced from the corresponding properties of Toeplitz 
operators; cf. [3] for a further discussion. This unitary equivalence is not used in the 
methods of the present paper however. 
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(8) K+QO - f e^k{t)dL 

Since Q A.R+, it follows that 

(9) Q ± (Re(K+))nR+ and Q ± ( I m ( Z + ) ) ^ + for n = 0 , 1 , 2, • • • . 

Only the first relation of (9) was exploited in [4], where it was 
shown that, as a consequence, Q(k) = 0 a.e. on the set for which 
Re(jfir+(X))7^0. The same argument (involving Weierstrass' approxi­
mation theorem) shows however that ()(X) = 0 a.e. also on the set for 
which Im(K+(\))?*0. Since q(t)^0 a.e. on 0 ^ / < o o , then (?(X)^0 
a.e. on — oo < \ < oo, and hence K+ÇK) = 0 on a set of positive measure. 
However, since kÇzLl(— oo, oo), K+ÇK) is the boundary function of a 
function K+(z)—f£eixtk(t)dt analytic in the upper half-plane 
lm(;s)>0 and bounded and continuous on lm(z) ^ 0 . If the half-plane 
lm(z)*£0 is mapped onto the unit circle \w\ g l by the linear frac­
tional transformation w~ (z—i)/(z+i), one then obtains a function 
K+(z(w)) analytic in \w\ < 1 , bounded on \w\ ^ 1 , and continuous 
on | w\ S1 except possibly at w(oo) = 1, and which is 0 on the bound­
ary | w\ = 1 on a set of positive measure. I t follows from the classical 
theorem of F. and M. Riesz [5] that this function must be identically 
0 and hence, in particular, that X+(X)s=0 on — oo < X < oo. Hence 
X(X) = 2Re(jS:+(X))sO and so k(t)^0 a.e., that is, -4=0 . This com­
pletes the proof of the first portion of the Theorem. 

3. To prove (5), let z satisfy 0 < | * | < 1 and put \^J^k{t)ztdL 
(Here zt — etlost * where log z denotes any value of the logarithm func­
tion.) If f(t)~z\ then ƒ G ^ and one has 

(10) (T*f)(t) « f "kis - t)z'ds - f °°k(s)z^ds « X/(/). 
J | J o 

Thus the range of f%k(t)z%dt, for 0 < | z\ < 1, belongs to the spectrum, 
even the point spectrum, of T*. (This fact and its derivation (10) are 
analogous to corresponding results for Toeplitz matrices, with the 
integrals replaced by power series, due to Wintner [6] ; cf. also [3, 
p. 129].) Since the spectrum is a closed set, it follows that K+(K) of 
(8) is in the spectrum of T* for all real X. Since K(K) =JK"+(X) + ^ + ( X ) , 

it follows from the second part of the Lemma that the interval 
[inf K(K), sup KÇK)] is certainly contained in the spectrum of A = T 
+ T*. (Only this much of the Lemma will be needed here.) On the 
other hand, as was shown in [4], (Tf)*(K) = Z+(X)/(X) and so, by the 
Parseval relation, 
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(Af, f) - {T/J) + (Tf,f) - f "jü(X) | /(X) |»dX. 

Hence, the spectrum of -4 is clearly a subset of [inf KÇK), sup ÜC(X)] 
and the relation (5) is proved. 
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