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1. This paper is a continuation of [4]. It may be recalled that if 4
is a self-adjoint operator on a Hilbert space § with spectral resolution
A= [\E,, then the set of elements x in § for which ||Exx||? is an
absolutely continuous function of \ is a subspace, $.(4), of $ (see,
e.g., Halmos [1, p. 104]). The operator 4 is said to be absolutely
continuous if .(4)=9. As in [4], both spaces L2(0, ) and
L2(— =, ») will be considered, but the underlying Hilbert space for
the integral operators T and 4 occurring below will be § =L2(0, «).

Asin [4],let k(f) on — © <t< o satisfy

(1) k€ L(— o, ©) N L¥— o, ©) and k(—1) = k(),
and let K(\) denote the (real-valued) function

2 KQ) = fwk(t)e'“‘dt, —o <A< ®,

If the (bounded) operator T on § is defined by

© @ = [ s - oioss,  0si<e,

then the self-adjoint operator 4 = T+ T*=2Re(7T) is given by
@ 4n® = [ ks - ofas

There will be proved the following

THEOREM. If k(2) satisfies (1) and if k() #£0 (a.e.) on — o <t< o,
then the self-adjoint operator A of (4) is absolutely continuous and its
spectrum is the closed interval

) sp(4) = [inf K(), supK ()],
where K(\) is defined in (2).

In [4] the absolute continuity of 4 was established under the
hypothesis that K(\) >0 a.e. According to the above Theorem how-

1 This work was supported by a National Science Foundation research grant.

340



WIENER-HOPF OPERATORS 341

ever, this property holds provided only that K(\)#£0, equivalently,
that 2(t) 0 a.e. In other words, 4 is absolutely continuous except
in the trivial case 4 =0. (Similar assertions hold for self-adjoint
Toeplitz operators; see [3, pp. 132-133] for a discussion and refer-
ences.)? The relation (5) can be deduced from a theorem given in
Krein [2, p. 224], concerning Wiener-Hopf operators on the half-
line. However, this fact, as well as the assertions of the above The-
orem concerning the absolute continuity, will be derived as conse-
quences of general results on hyponormal operators on a Hilbert
space and which are contained in the following

LeMMA. Let T be a bounded operator on a Hilbert space O and let
(6) T*T — ITT* = C, c=z0.

If A=T+HT* then D.(A) contains the smallest subspace, Mz, of O
which reduces T and which contains the range of C. Moreover, the spec-
trum of the real part of T (that is, of 3A) is the projection onto the real
axis of the spectrum of T.

The proof of the Lemma can be found in [3, pp. 42-43, 46-47].
The proof of the absolute continuity assertion of the Theorem will be
given in §2 and that of (5) in §3.

2. It will be convenient to recall a part of the argument given in
[4]. It was noted there that relation (6) holds for T of (3) on
$=L20, ») with C=B*B and (Bf)()=/[ok({+s)f(s)ds. For
FEL0, ®), put JO)=fsef()dt=F_(\) and Fy(\) = [redf(t)dt
and let R, and R_ denote the orthogonal subspaces of L2(— », «)
consisting of the elements F, and F_ respectively. (Note that R, [R_]
can be regarded as the space of Fourier transforms of elements in
L*(— o, ») which are 0 on the right [left] half-line.)

As in [4], if the space My of the Lemma is not P, then there exists
a function ¢&€ 9, ¢#0 (that is, ¢(¢) %0 a.e. on 0=¢< ») such that
g LMy, (It will be shown below that necessarily 4 =0 in this case.)
If Q=0Q0) = [y e™Mg(t)dt (ER.), then, as wasshown in [4], Q LK% R,,
n=0,1,2, - .-, where

2 Added in proof. It follows from a result of M. Rosenblum (Self-adjoint Toeplitz
operators, 1965 Summer Institute in Spectral Theory and Statistical Mechanics,
Brookhaven National Laboratory, Upton, New York) that the above A4 is unitarily
equivalent to a self-adjoint Toeplitz matrix. The absolute continuity of 4 as well as
the assertion (5) can then be deduced from the corresponding properties of Toeplitz
operators; cf. [3] for a further discussion. This unitary equivalence is not used in the
methods of the present paper however.
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®) K.Q) = f " enn(t)dt.

Since Q LR, it follows that
9 Q L (Re(Ky)"R, and Q L (Im(K,))"R, forn=20,1,2,-.-.

Only the first relation of (9) was exploited in [4], where it was
shown that, as a consequence, Q(A\) =0 a.e. on the set for which
Re(K+(\))#0. The same argument (involving Weierstrass’ approxi-
mation theorem) shows however that Q(\) =0 a.e. also on the set for
which Im(K;(\)) 0. Since ¢(t) #0 a.e. on 0=¢t< «, then Q(\) 0
a.e. on — o <A< », and hence K, (\) =0 on a set of positive measure.
However, since kELY(— », »), K. (\) is the boundary function of a
function K, (2)=[7e*k(t)dt analytic in the upper half-plane
Im(z) >0 and bounded and continuous on Im(z) 0. If the half-plane
Im(2) =20 is mapped onto the unit circle |-w| =1 by the linear frac-
tional transformation w= (z—1%)/(z-+1), one then obtains a function
K. (z(w)) analytic in le <1, bounded on Iw[ =<1, and continuous
on le =<1 except possibly at w(e) =1, and which is 0 on the bound-
ary I'w =1 on a set of positive measure. It follows from the classical
theorem of F. and M. Riesz [5] that this function must be identically
0 and hence, in particular, that K;(\)=0 on — © <A< », Hence
K(\)=2Re(K;(\))=0 and so k(t)=0 a.e., that is, 4 =0. This com-
pletes the proof of the first portion of the Theorem.

3. To prove (5), let 3 satisfy 0<|z| <1 and put A= [y k()sz'ds.
(Here zt=¢t"2 * where log z denotes any value of the logarithm func-
tion.) If f(¢) ==2¢, then fE P and one has

1) (T = f " k(s — Davds = fo " k(s)atds = (D).

Thus the range of [ k(t)z'dt, for 0<|s| <1, belongs to the spectrum,
even the point spectrum, of T*, (This fact and its derivation (10) are
analogous to corresponding results for Toeplitz matrices, with the
integrals replaced by power series, due to Wintner [6]; cf. also [3,
p. 129].) Since the spectrum is a closed set, it follows that K. (\) of
(8) is in the spectrum of T* for all real X. Since K(\) =K, (\)+EK+(\),
it follows from the second part of the Lemma that the interval
[inf KQ\), sup K(\)] is certainly contained in the spectrum of 4 =T
~+T*, (Only this much of the Lemma will be needed here.) On the
other hand, as was shown in [4], (Tf)"(\) = K+(\)J(\) and so, by the
Parseval relation,
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A50) = @ + @D = [ KO |09 .

Hence, the spectrum of 4 is clearly a subset of [inf KQ\), sup KQ\)]
and the relation (5) is proved.
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