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In a recent paper [4] F. E. Browder and W. V. Petryshyn have 
shown that if a nonexpansive mapping T: X—>X of a Hubert space X 
into itself is asymptotically regular and has a t least one fixed point 
then, for any x in X, a weak limit of a weakly convergent subse­
quence of the sequence of successive approximations {Tnx} is a fixed 
point of T. The main object of the present note is to strengthen con­
siderably this result by showing that under the same assumptions the 
sequence {Tnx} is necessarily weakly convergent. 

In §1 we recall some basic definitions and prove two simple lemmas. 
In §2 we prove the weak convergence of the sequence {Tnx} and in 
§3 we discuss the possibility of the extension of this result to Banach 
spaces having weakly continuous duality mappings. In §4 an applica­
tion of Theorem 2 stated in §3 to a modified sequence of successive 
approximations is given and, in §5, limits of validity of the first key 
lemma of §1 are discussed. 

1. Let C be a convex closed set in a Banach space X. A mapping 
T: C-+X is called nonexpansive if ||7a; —!T;y|| g||#— y§ for any x, y 
in C. Following [4], a mapping T: C—*C is said to be asymptotically 
regular if, for any x in C, the sequence { Tn+1x — Tnx } = {(!— T) (Tnx)} 
tends to zero as n—»<*>. Finally, a mapping T: C—>X is called demi-
closed if its graph in CXX is closed in the topology of a Cartesian 
product induced in CXX by the weak topology in C and the strong 
topology in X\ i.e., if for any sequence {xn} C.C which converges 
weakly to an xQ in C, the strong convergence of the sequence {Txn} 
to a y0 in X implies that Txo = yo. 
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In a Hubert space X, the following lemma characterizes the weak 
limit of a weakly convergent sequence: 

LEMMA 1. If in a Hubert space X the sequence {xn} is weakly con­
vergent to XQJ then for any XT^XO, 

(1) lim inf \\xn — x\\ > lim inf \\xn — x0\\. 

PROOF. Since every weakly convergent sequence is necessarily 
bounded, both limits in (1) are finite. Thus, to prove this inequality, 
it suffices to observe that in the equality 

\\xn ~ HI2 = II*» — *0 + Xo — x\\2 

= H*» — #o||2 + ||*o — x\\2 + 2 Re(xn — &o, x0 — x) 

the last term tends to zero as n tends to infinity. 
This simple lemma enables us to prove the following useful prop­

erty of nonexpansive mappings in Hubert spaces which in [ l ] has 
been proved by the means of the theory of monotone mappings. 

LEMMA 2. In a Hilbert space X, for every nonexpansive mapping 
T: C—>X, the mapping I—T is demiclosed. 

PROOF. Let {xn} QC be a sequence which is weakly convergent to 
an element Xo of C and let the sequence i Xfi " JL XJI \ converge to an 
element yo in X. Then we have 

lim inf \\xn — Xo\\ ^ lim inf \\Txn — Tx0\\ = lim inf \\xn — y0 — Txo\\, 
n—+oo n--+°Q n—»«o 

so that from Lemma 1 it follows that Xo—yo+Txo. 

2. Using once again Lemma 1 we shall prove the following: 

THEOREM 1. Let C be a closed convex set in a Hilbert space X and let 
T: C—+C be a nonexpansive asymptotically regular mapping for which 
the set F of fixed points is nonempty. Then, for any x in C, the sequence 
of successive approximations { Tnx} is weakly convergent to an element 
ofF. 

PROOF. For every y in F, the sequence {||rwx~^||} is nonincreas-
ing, since by the nonexpansivity of T we have 

IIP*1* - y\\ = \\T(T*x) - Ty\\ rg \\Tnx - y|| (» = 0, 1, • • • ). 

Therefore, for any y in F, there exists the nonnegative limit 

d(y) = lim \\Tnx - y\\. 
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F is a closed convex subset of C. For any d è 0, the set 

Fd= {yEF:d(y) S d] 

is a convex closed and bounded subset of F, nonempty if d is large 
enough. Since X is a reflexive space, there exists the smallest 5 for 
which Fs is nonempty. F$ consists of exactly one element, say y0, since 
otherwise the midpoint of the segment joining any two distinct ele­
ments of F$ would belong, by the uniform convexity of X, to an Fd 
with d<8. 

We shall prove that the sequence {Tnx} converges weakly to y0. 
Suppose the contrary. Then, by the reflexivity of X and the bounded-
ness of the sequence { Tnx}, there exists a weakly convergent subse­
quence {J,w*#} whose limit, say y, is different from y0. From the 
asymptotic regularity of T, it follows that the sequence {(I—T) (Tnix)} 
tends to zero as n—•><». Thus, by Lemma 2, we have (I—T)(y) = 0, 
i.e. y is a fixed point of T. Now, by Lemma 1, we have 

à = d(yQ) = lim ||Tnix - y0\\ > lim \\Tnix - y\\ = d(y) 

which yields a contradiction with the definition of 5 and completes 
the proof. 

3. From the proof of Theorem 1 it is clear that the assertion of this 
Theorem may be extended to every Banach space X for which the 
following four conditions are satisfied: (i) X is reflexive, (ii) the set 
F of fixed points of a nonexpansive mapping in X is convex, (iii) the 
set F8 consists of exactly one element, and (iv) Lemma 1 is valid in X. 

The first three conditions are satisfied if X is uniformly convex, 
but, unfortunately, as we shall see in §5, Lemma 1 fails to be true for 
all uniformly convex Banach spaces. However, it remains still valid 
for a large class of uniformly convex Banach spaces having weakly 
continuous duality mappings. 

Let X be a Banach space, X* its dual space and (u, x) the value of 
the linear functional w £ X * at the element x of X. Let fi be a continu­
ous strictly increasing real valued function on R+ with /x(0) =0 . 

A mapping J: X—>X* is called (see [3]) a duality mapping of X 
into X* with the gauge function fi if both of the following conditions 
are satisfied: 

(a) For every x in X, (Jx> x) 
(b) For every x in X, \\Jx\\ =/x(| HI). 
LEMMA 3. If in a Banach space X having a weakly continuous duality 

mapping J the sequence {xn} is weakly convergent to x0, then for any 
xinX: 
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(2) Hm inf \\xn — x\\ ^ lim inf \\xn — x0\\. 

If, in addition, the space X is uniformly convex, then the equality in 
(2) occurs if and only if x = #0. 

PROOF. In the relationship 

(J(0Cn — X0), %n — *o) = (J(Xn — # o ) , Xn ~ x) + (J(%n — # o ) , X — X0) 

the last term tends to zero as n—*<x>, since the sequence {#n—#o} 
converges weakly to zero and therefore, by the weak continuity of J, 
so does the sequence {J(xn—#o)}. Hence, by conditions (a) and (b) of 
the definition of a duality mapping, we have 

lim inf fx(\\xn — ffo||)||#» — x0\\ 2g lim inf | {J(xn 
«—•oo n—+co 

^ Km inf \\J(xn -
n—»oo 

= lim inf ii(\\xn -

This implies immediately the inequality (2). 
To complete the proof, it suffices to observe that if, in a uniformly 

convex Banach space X, both limits in (2) were equal for an x different 
from xo, then for the midpoint y of the segment joining x to x0 we 
would have the inequality 

lim inf \\xn — y\\ < lim inf \\xn — x0\\ 
n-»oo »—>oo 

which is impossible. 
Now it is clear that using Lemma 3 in the place of Lemma 1 we 

are able to prove an extended version of Lemma 2 obtained by repla-
ing the assumption that X is a Hilbert space by the assumption that 
X is a uniformly convex Banach space having a weakly continuous 
duality mapping. In the case C~X this statement has been proved 
by F. E. Browder in [3] even in a more general setting—for all real 
(not necessarily uniformly convex) Banach spaces with a weakly con­
tinuous duality mapping. His proof, however, rests heavily upon a 
connection between nonexpansive mappings and the so-called J-
monotone mappings, a connection which works well only for non-
expansive mappings defined on the whole space X. In Hilbert spaces 
this restriction may be easily lifted by an application of the Kirsz-
braun-Valentine theorem (see [l]) on the existence of extensions of 
nonexpansive mappings, but in arbitrary Banach spaces such an 

- xo), xn — x) J 

#o)| |*| |#n ~ #| | 

*o||)||an — x\\. 
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extension theorem is not available, and the question of how to elim­
inate this restriction remains open. 

At any rate, from Lemma 3 and the corresponding generalized 
version of Lemma 2, we obtain the following theorem which may be 
proved along the same line as Theorem 1 : 

THEOREM 2. Let Cbea closed convex set in a uniformly convex Banach 
space X having a weakly continuous duality mapping. Assume that the 
nonexpansive asymptotically regular mapping T: C—+C has in C at least 
one fixed point. Then for any x in C, the sequence {Tnx} is weakly con-
ver gent to a fixed point of T. 

Let us observe that Theorem 2 applies in particular to the spaces 
lp , for l<p< + <*>, since all these spaces are uniformly convex and 
have (see [3]) weakly continuous duality mappings. 

4. For a given nonexpansive mapping J" of a closed convex set C 
of a Banach space X into itself and any X£(0 , 1), the mapping 
7x = \I+ (1—\)Tis nonexpansive, maps C into itself and has the same 
set of fixed points as T. Moreover, as it has been pointed out by M. A. 
Krasnosel'skiï [ó] for X = J and by H. Schaefer [7] for an arbitrary X, 
if X is uniformly convex and T has a t least one fixed point in C, then 
the mapping 7 \ is asymptotically regular (see also [4]). Combining 
these results along with Theorem 2 we obtain the following: 

THEOREM 3. Let Cbea closed convex set in a uniformly convex Banach 
space X having a weakly continuous duality mapping and let T: C—+C 
be a nonexpansive mapping with at least one fixed point. Then for any x 
in C and any X£(0 , 1) the sequence of successive approximations 
{T%x} is weakly convergent to a fixed point of T. 

For weakly continuous nonexpansive mappings in real Hilbert 
spaces, Theorem 3 has been proved by H. Schaefer in [7] by a ge­
ometrical argument which contains in a somewhat crude form all 
essential ideas of our proof of Theorem 1. 

I t should be noticed that Theorem 3 gives a partial affirmation of 
a conjecture of H. Schaefer, that for weakly continuous nonexpansive 
mappings T in uniformly convex Banach spaces the sequence of 
successive approximations constructed by the aid of the auxiliary 
mapping 7 \ (0<X<1) is always weakly convergent. Namely, from 
this theorem it follows that it is really so for Banach spaces with 
weakly continuous duality mappings. But, as there exist (see §5 
below) uniformly convex spaces that do not have weakly continuous 
duality mappings, the question as to whether Schaefer's conjecture 
in its original form is true or not still remains open. 
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Let us recall that if the set C is bounded, then the existence of at 
least one fixed point of a nonexpansive mapping follows from a 
theorem proved independently by F. E. Browder [2] and W. A. 
Kirk [5]. 

5. The key role played by Lemma 1 in the proofs of Lemma 2 and 
Theorem 1 raises a natural question as to what extent this charac­
terization of the weak limit by the norm is valid in general Banach 
spaces. A partial positive answer to this question is given by Lemma 
3. However, we shall show that Lemma 1 cannot be extended to the 
broader class of all uniformly convex Banach spaces. We shall prove 
that, for l<p<2 and 2<p< + oo, none of the spaces Lp[0, 2x] have 
the property stated in that lemma. By Lemma 3, this will give an 
indirect proof that none of these spaces have a weakly continuous 
duality mapping (for £ = 4 this has been explicitly proved in [3]). 

Let <j> be a periodic real valued function of period 2w such that 

0(0 - 1 for 0 S t £ (3/4)TT, 

= - 2 for (3/4)» < t < 2T. 

Since for every step function \f/ we have 

/

> 2ir 

<f>(nt)>p(t)dt = 0, 
0 

the sequence {<£(#/)} is weakly convergent to zero in each of the 
spaces Z>[0, 2ir] (1 <p< + «>). For any constant function equal to c, 
we have 

%(c) = lim \\4>(nt) - c\\*> = lim I | 4>(nt) - c\pdt 

= I | * W -c\*dt. 

Hence 

/

• 2x 

| <f>(t) I*-1 s g n 4>(t)dt. 
o 

By the definition of <£, $£(0)^0 whenever p^2. This implies that 
$3,(0) is not an extremal value of the function $p(c), except for the 
case p — 2. 
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