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For N= 1, 2, 3, • • the polydisc UN consists of all z — (z\, • • • , ZN) 
in the space CN of N complex variables whose coordinates satisfy 
\ZJ\ < 1 for 7 = 1, • • • , N. We write U for U1. The distinguished 
boundary of UN is the torus TN denned by |*y| = 1 (l^j^N). The 
zero-set of a complex function ƒ defined in UN is the set Z(f) of all 
zEUN a t which ƒ(*)=(). We call a set EQUN a zero-set in UN if 
E = Z(f) for some ƒ which is holomorphic in UN. The main result of 
this note gives a sufficient condition for zero-sets of bounded functions. 

THEOREM 1. If Eis a zero-set in UN and if no point of TN is a limit 
point of E, then there is a bounded holomorphic function F in UN such 
that Z(F)=E. 

[The term "limit point" refers of course to the topology induced 
on CN by the euclidean metr ic] 

For N=l this is utterly trivial since the hypothesis then forces 
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£ to be a finite set. For iV> 1, however, the theorem does have con­
tent: a qualitative corollary is that zero-sets in UN which have posi­
tive distance from TN must be rather nice near the rest of the bound­
ary of UN. More precisely, such sets E must satisfy the following gen­
eralized Blaschke condition: 

If *(X) = (0i(X), • • • , ^>AT(X)) for X£Ü7, where each <j>j is a holo­
morphic map of U into U, and if 

(1) F = S - ^ J Z n *(£/)) 

then either Y=U or Y is an at most countable set {Xt} such that 

This is a consequence of Blaschke's theorem, applied to the zeros of 
the bounded function F o $ . 

I t is also worth noting that the hypothesis of Theorem 1 does not 
imply the stronger conclusion that F can be chosen so as to be con­
tinuous on UNKJTN: 

THEOREM 2. There exists a zero-set E in U2 which has no point of T2 

as a limit point but which has the following property: If Fis holomorphic 
in U2 and continuous on £ / 2 U J P 2 and if Z(F) contains E, then F = 0. 

We first sketch the proof of Theorem 2. Let B be a Blaschke prod­
uct such that every point of the unit circle is a limit point of zeros of 
J3, define ƒ(*, w)=2w-B(z) for (z, w)<EU2

f and put E = Z(f). If F is 
holomorphic in U2 and continuous on U2}UT2 then F has a continuous 
extension to the closure of Z72, and if \z\ = 1 , F(z} •) is holomorphic in 
U and continuous on V. Known properties of Blaschke products 
imply that the closure of E contains all points (z, w) with \z\ = 1 , 
\w\Sh Hence F(z,w)=0 for \z\ = 1 , \w\ ^IUECZ(F). In particu­
lar, F(z, w) = 0 at every point of T2

t hence F~Q. 
The proof of Theorem 1 starts with a one-variable lemma. 

LEMMA 1. If 0 < r < l , Q= {X: r < | \ | < l } , and 

00 - 1 

(2) h(\) = £ a»X", W = X <^B 

for XE<2, then 

(3) | |Re*i | |Qâ (8/(1 — r))||ReA||Q. 

The norm used in (3) is the supremum over Q. 
Suppose h — u+iv in Q and \u\ g l . Put / = § ( l + r ) . I t is easy to 

see that |A'(X)| ^ 4 / ( 1 - r ) if |X| =/ , so that 

file:///w/Sh
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- 2 oo / oo \ 2 —2 oo 

V n = l / O m = l 

^— 2Z »2I <*»h2n-2 

= 7T f*| W ) N < 
12 «/_» 

36 

(1 - r)« 

Hence if XGÖ a n d |X| *s close to r, we have 
00 

u(\) — Re ao — Re X} önXw Re Ax(X) | 
6 8 

<2 + < 1 - r 1 - r 

Since &i(\)—>0 as X—><*> the lemma now follows from the maximum 
modulus theorem. 

Lemma 1 can be extended to several variables. Let QN be the car­
tesian product of N copies of the annulus Q. Every h holomorphic in 
QN has an absolutely convergent Laurent expansion 

(4) h(zh • • • , ZN) = S a(nh • * • y n>N)zi - • • ZN 

in which the exponents Ui range independently over the set of all 
integers. For j = l, • • - , N let Wjh be the series obtained from (4) 
by replacing a(tii, • • • , UN) by 0 whenever » / è 0 . 

LEMMA 2. | |Reiry*||tf^ (8/(1 —r))|JRe *||o^. 

I t suffices to prove this for j = l. Rewrite (4) in the form 

(5) *(*) = X) <l>n(Z2, • • • , 8^)»* ( « G O ) 

and apply Lemma 1 (regarding z2, • • • , ZN as fixed). 
We now prove Theorem 1. Fix r < l so that the distance from E to 

QN is positive. Choose ƒ holomorphic in UN, so that Z(f)~E. Put 
s' = (z2, • • • , ZN). For Jfe = 0, 1, 2, • • • and z'EQ*-1 put 

(6) *W-f/ ^ ^ « 
where D\ denotes differentiation with respect to the first variable. 
Each yf/k is holomorphic in QN""1. The number of zeros of ƒ ( •, zf) in U 
{counted according to multiplicities) is \f/o(z'). So xpo is integer-valued, 
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hence constant, in QN~l. Call this constant m, let 0:1(0')> * * * » <Xm{zf) 
be the zeros of ƒ(•, z')y and define 

(7) «co = n (* - «y(«0) ( s e c x e * - 1 ) . 
If fe^l, isk(z')= HL,OLJ(Z'). The elementary symmetric functions are 
polynomials in these power sums. I t follows that </>, f/<j> and <j>/f are 
holomorphic in UXQN~1* The topological structure of QN~l therefore 
shows that there are integers £2, • • • , &iv such that zfo • • • ZMkN<t>/f 
has a single-valued continuous logarithm in UXQN~l. Put fi = Z2k* 
• • • zN

kN<j>. Then/ i= / -exp(g i ) in UXQN~1
f with gi holomorphic, and 

(7) implies t h a t / i and l / / i are bounded in QN. 
Similarly, there are holomorphic functions g3- in Qi~lXUXQN~i 

0-Sjl^N) such that, setting 

(8) ƒ,(*) = ƒ(*) • exp(&(«)) (* G Q>-1 X U X Q*-0, 

both /y and 1/fj are bounded in QN. 
I t follows that ƒ*/ƒ,• is bounded in QN. Hence Re(g*—-gy) is bounded 

in QN> for every pair i,j. Also, irjgj = 0, so that 

(9) Re rjgi = Re *•/(& - gy). 

Lemma 2 (with h = g\—g3) now implies that Re 7Tygi is bounded in QIf
f 

for j = l, • • • , N. Put 

(10) g = (1 - TN) • • • (1 - 7T2)(1 - T 0 « 1 . 

Since 

(11) gi — g = Yl mil — Z) TWTjgi + X) TwrjiTkgi — • • • , 

repeated application of Lemma 2 shows that Re(gi~g) is bounded 
in QN. Since the projections Wj commute with each other, (10) implies 
that 7Tyg = 0 for l^j^N; this says that g extends to a function G 
holomorphic in UN. 

The function F=f-exp(G) has the desired properties. For F clearly 
has the same zeros a s / , and in QN we have F=/i-exp(g—gi). Since fi 
and Re(g—gi) are bounded in QN, F is bounded in QN> hence in £7^. 
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