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For N=1,2,3, - - - the polydisc U¥ consistsof all z=(zy, - - -, 2n)
in the space C¥ of N complex variables whose coordinates satisfy
|2;] <1 for j=1,--., N. We write U for U’ The distinguished

boundary of UY is the torus 7% defined by |z,~] =1 (1=j<N). The
zero-set of a complex function f defined in UY is the set Z(f) of all
z2E& UY at which f(z) =0. We call a set ECU¥ a zero-set in UV if
E=_Z(f) for some f which is holomorphic in U¥. The main result of
this note gives a sufficient condition for zero-sets of bounded functions.

THEOREM 1. If E is a zero-set in U¥ and if no point of TV is a limit
point of E, then there is a bounded holomorphic function F in U¥ such
that Z(F)=E.

[The term “limit point” refers of course to the topology induced
on C¥ by the euclidean metric.]
For N=1 this is utterly trivial since the hypothesis then forces
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E to be a finite set. For N>1, however, the theorem does have con-
tent: a qualitative corollary is that zero-sets in U¥ which have posi-
tive distance from 7% must be rather nice near the rest of the bound-
ary of UV, More precisely, such sets £ must satisfy the following gen-
eralized Blaschke condition:

If ®QA)=(d1\), - - -, dxN)) for N\& U, where each ¢; is a holo-
morphic map of U into U, and if
1) Y = & 1(EN &(0))

then either Y=U or Y is an at most countable set {)\;} such that
=[] <.

This is a consequence of Blaschke’s theorem, applied to the zeros of
the bounded function Fo &®.

It is also worth noting that the hypothesis of Theorem 1 does not
imply the stronger conclusion that F can be chosen so as to be con-
tinuous on UN\UT?:

THEOREM 2. There exists a zero-set E in U? which has no point of T?
as a limit point but which has the following property: If F is holomorphic
in U? and continuous on U\JT? and if Z(F) contains E, then F=0.

We first sketch the proof of Theorem 2. Let B be a Blaschke prod-
uct such that every point of the unit circle is a limit point of zeros of
B, define f(z, w) =2w—B(g) for (3, w)& U? and put E=Z(f). If Fis
holomorphic in U? and continuous on U2\JUT? then F has a continuous
extension to the closure of U2, and if |z| =1, F(z, -) is holomorphic in
U and continuous on U. Known properties of Blaschke products
imply that the closure of E contains all points (z, w) with |z| =1,
[wl <1 Hence F(z, w) =0 for |z| =1, !w] =<1if ECZ(F). In particu-
lar, F(z, w) =0 at every point of 72, hence F=0.

The proof of Theorem 1 starts with a one-variable lemma.

Lemma 1. If 0<r <1, Q= {\: r<|\| <1}, and

@ ) = 5 arn ) = 3 e
for NEQ, then
® [Re nlle = 8/(1 = n)|Re H]e.

The norm used in (3) is the supremum over Q.
Suppose k=u- in Q and 'ul =<1. Put t=%(1+47). It is easy to
see that | (\)| <4/(1—7) if |\]| =¢, so that


file:///w/Sh

582 WALTER RUDIN July

£ 2 1|.2 )
{Zid»if"} -3 | g [2ren

n=1 n=1

IIA
o |

w2

o0
. Z nzl anl2t2”‘2

6

I

' d s
= — K (te*®) |2d6 < .
o e o < =
Hence if N€Q and || is close to 7, we have
-t 8
IRehl()\)|= #(\) — Re ap — Re >, @\ <2—i~1 <1
n=1 il 4 -7

Since h;(\)—0 as A—« the lemma now follows from the maximum
modulus theorem.

Lemma 1 can be extended to several variables. Let Q¥ be the car-
tesian product of IV copies of the annulus Q. Every % holomorphic in
Q¥ has an absolutely convergent Laurent expansion

(4) h(zl’ SR ZN) = Z a(nl, e, nN)z';l .. ',Z'I‘\?’

in which the exponents #; range independently over the set of all
integers. For j=1, - - -, N let m;k be the series obtained from (4)
by replacing a(ni, - - -, nxy) by 0 whenever #;=0.

LemMA 2. || Re mh]| v < (8/(1—7))|| Re | e.

It suffices to prove this for j=1. Rewrite (4) in the form

®) WD) = 2 dulan, - ya)m EQ)
and apply Lemma 1 (regarding 2, - - -, 3y as fixed).

We now prove Theorem 1. Fix r <1 so that the distance from E to
Q¥ is positive. Choose f holomorphic in U?, so that Z(f)=E. Put

2'=(2, -, 2y). For k=0, 1, 2, - - - and 2’EQ¥! put
1 (Dsf)(&, %)

6 (@) = ——f ———{*df

© ) = i e 16 )

where D; denotes differentiation with respect to the first variable.
Each ¢ is holomorphic in Q¥—1. The number of zeros of f(-, ') in U
(counted according to multiplicities) is ¥o(2"). So ¥, is integer-valued,
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hence constant, in Q¥-1, Call this constant m, let a.(2'), - - -, aa(2’)
be the zeros of f(-, 2’), and define

(™ 6@ = I (&1 — a;(z)) (€ U X @¥Y).
=1

If k=1, u(z') = 2 af(z’). The elementary symmetric functions are
polynomials in these power sums. It follows that ¢, f/¢ and ¢/f are
holomorphic in UX Q¥ The topological structure of Q¥-! therefore
shows that there are integers ks, : - -, ky such that z)*: - - - zy*ng/f
has a single-valued continuous logarithm in UXQ¥-1, Put fi=z"

- - zy*n¢. Then fi=f-exp(g1) in UXQ¥1, with g holomorphic, and
(7) implies that f; and 1/f, are bounded in Q¥.

Similarly, there are holomorphic functions g; in Q~1X UXQN—i
(1=j=N) such that, setting

® fi(®) = f(2)-exp(gi(2)) (€ Q7 X U X Q¥9),
both f; and 1/f; are bounded in QY.
It follows that f;/f; is bounded in Q¥. Hence Re(g;—g;) is bounded
in Q¥, for every pair 7, j. Also, 7;g;=0, so that
) Re ;81 = Re (g1 — g)-

Lemma 2 (with 2=g;—g;) now implies that Re 7;g; is bounded in Q¥,
for j=1, - - -, N. Put

(10) g=0—ay)--- (1 —m)(1 — 71)g1
Since
(1)  g1—g= D2 miga— D wamign + 2, mmmgr — - - -,

repeated application of Lemma 2 shows that Re(gi—g) is bounded
in Q. Since the projections 7; commute with each other, (10) implies
that m;g=0 for 1<j=<N; this says that g extends to a function G
holomorphic in U¥.

The function F=f-exp(G) has the desired properties. For F clearly
has the same zeros as f, and in Q¥ we have F=f;-exp(g—gi1). Since f,
and Re(g—g1) are bounded in Q¥, F is bounded in Q¥, hence in UY.
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