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The partial differential equations associated with many problems 
in elasticity are distinguished from other equations of mathematical 
physics by their nonlinearity, ellipticity and variational character. 
Generally a study of the totality of solutions of the boundary value 
problem associated with this system of higher order equations is 
required. The object of this note is to show, by example, that these 
problems are often mathematically tractable by the combined use of 
modern regularity theory for elliptic equations and the nonlinear in­
variants of the associated multiple integral variational problem. 

In this note we study the problem of post-buckling behavior of thin 
elastic structures as defined by Von Karman's equations. In an earlier 
note [4], the author, together with P. Fife, studied this problem for 
small deflections of thin plates. Here we outline how this work can be 
extended to study large deflections of plates and curved elastic struc­
tures, (i.e. shells). 

Mathematically the associated variational problem requires us to 
study the critical points of a smooth functional on an infinite dimen­
sional smooth manifold. This manifold arises naturally from the 
physical problem as a surface of "constant internal energy. " This 
point of view enables us to apply the previous studies of nonlinear 
elliptic eigenvalue problems [S], [ó] and Ljusternik-Schnirelmann 
category [8], [lO] to these problems. 

Previous studies of the mathematical aspects of the buckling of thin 
elastic structures have been studied by Friedrichs [7], Reiss [9], 
Vorovich [ l l ] among others. The results obtained here are closely 
related to the numerical studies of Bauer and Reiss [2]; [3]. The 
author is grateful to Professor E. Reiss for many helpful suggestions 
in connection with this work as well as suggesting the example of §5. 

1. The boundary value problem and its variational reformulation 
for a clamped plate* Let Q be a bounded domain in R2 with boundary 
00 consisting of a finite number of arcs on each of which a tangent 

1 This research was partially supported by: U. S. Army Research Office (Durham) 
DA-ARO-31-124-D365 and NSF Grant GP 3904. 
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rotates continuously. Defined over Q we consider the following system 
of partial differential equations and boundary conditions: 

à*u » \[F, u] + [ƒ, u], 

(2) u = uz = % = ƒ = ƒ * = /y = 0 on dO 

where [ƒ, |[]=/a«tgvV+/tfy|:**—2/eyga;y, A2 denotes the biharmonic oper­
ator and F(x, y) is a given smooth function. 

The physical significance of these equations is stated in [4]. 
We denote by T^,2(0) the collection of all functions whose deriva­

tives of all orders up to and including two lie in £2(0); ^2,2(0) is a 
Hubert space with respect to the inner product 

(u, z>)2,2 = ]C (D"u, D"v)Ltm-
|a|=2 

W%,t(Q) is the closure of C£(Q) in W^CD!). We define the following 
operators mapping 1^2,2(0) into itself: 

(B(u, v), 4>) = f k v]<t> for <t> G C"(Û), 
•J o 

Lu = £(«, F), 

Tw « B(u, B(u, u)). 

These operators J5, L and T* are well defined on C*(Î2) and can be ex­
tended to W%${Q) by means of the divergence form of the differential 
expression [ƒ, g], the Sobolev Imbedding Theorem and the Riesz 
representation theorem for linear functionals on ^2,2(0), as in [5, 
Part II] . 

We now construct a variational principle for the system (1), (2) by 
considering the functionals 

*i(«0 = h\W + l(?{u), u), 
$2(«) = l(Lu, u). 

We note that the functional ^(u) is weakly continuous on $2,2(0). 
For each fixed positive number R, we define an energy surface as 

the infinite dimensional manifold 

dAu = {«I u E Wi,*(Q), *i(«) = R}. 

THEOREM 1 (A REGULARITY THEOREM). Any smooth solution of the 
system (1), (2) can be obtained as a critical point of the functional 
$2(u)=$(Lu, u) over the infinite dimensional Hilbert manifold dAR. 
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Conversely any such critical point determines a smooth solution of the 
system (1), (2) in Q and at all sufficiently smooth portions of dQ. 

The proof of this result follows from Theorem 1 of [4] which in 
turn is based on Agmon [ l ] and the fact that the Euler-Lagrange 
equations of the constrained variational problem yield generalized 
solutions of the system (1), (2). I t is important for our treatment 
that the variational problem can be expressed entirely in terms of the 
function u(x, y). Once u(x, y) is obtained f(x, y) is uniquely deter­
mined by virtue of the first equation of the pair (1) and the boundary 
conditions (2). 

2. The infinite dimensional manifold dAR. In order to determine the 
qualitative nature of the solutions of (1), (2) we begin by analyzing 
the topological structure of the manifold dAR. This structure, in turn, 
is determined by the properties of T. 

LEMMA 1. Let the operator T be defined as in §1, then 
(i) For any scalar a, T(au) =a3T(u) ; 
(ii) T maps weakly convergent sequences into strongly convergent se­

quences; 
(iii) (Tu, u)^0; 
(iv) For w£C2(Û)nCo(0), (Tu, u)=0if and only if u = 0; 
(v) T is a variational operator, i.e. the Gateaux derivative of \(Tu, u) 

in the direction v is (Tu, v) for every v(E 1̂ 2,2 (Œ) ; 
(vi) T is Frechet differentiable ; 

u—v \\, where Ko is some constant 
independent of u and v. 

PROOF. Property (i) is a consequence of the definition of T. Prop­
erties (ii) and (vii) follow from Sobolev's Imbedding Theorem. By 
virtue of the divergence form of the expression [ƒ, [g, h]], we obtain 

(Tu,u) = \\B(u,u)\\*. 

Thus we obtain property (iii). The proof of property (iv) makes use 
of the additional fact that for sufficiently smooth u, the equation 
B(u, u)=0 reduces to the equation of Monge-Ampere type 

2 
WXXWyy — Wxy = 0 . 

Properties (v) and (vi) follow from the symmetries of the expression 

f\f,[g,h)]+ tor/, g,h,<i> e e;®. 
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THEOREM 2. dAR is a C2 Hilbert manifold t with the following prop­
erties : 

(i) dAR is a bounded starlike set in Wz^ti), 
(ii) dAR is not the boundary of a convex set, 
(iii) ÖAR is homeomorphic to the boundary of the Hilbert sphere of 

radius R, d ^2R, for each fixed number Rt (by the natural mapping along 
rays through the origin), 

(iv) dAR is symmetric with respect to the origin w = 0, 
(v) On dAR, ||u\\ ^ a > 0 where a is a constant independent of u. 

These results are immediate consequences of Lemma 1 and the 
definition of dAR. For example, to show dA R is a bounded set, we note 
that if <f>i(u)^R, \\u\\^(2R)112 by property (iii) of Lemma 1. 

3. Solutions of the nonlinear problem "in the large." In this sec­
tion we study the solution of the system (1), (2) as a function of X. 
In [4], it was shown that if we denote by Xi, the smallest eignevalue 
of u=\Lu, the system (1), (2) has no solutions for XrgXi, except the 
trivial solution u=f=0. To supplement this result we have the 
following: 

THEOREM 3 (A STURM-LIOUVILLE THEOREM). For each positive 
number R, the equations (1), (2) have a countably infinite number of dis­
tinct solutions un(R) CzdAR with associated eigenvalues Xn(P)—» °° • Each 
Ufl I/O characterized as a solution of the variational problem 

sup min % (Lu, u) 
[V]n v 

where VCZSAR and [V]n is an appropriate homotopy class of sets con­
taining V. 

The proof of this result can be ortained from the author's paper 
[5], Browder [ó], Palais [8], or Schwartz [lO]. 

4. Bifurcation theory. Here we show that from each eigenvalue of 
the selfadjoint eigenvalue problem u=\Lu, independent of multi­
plicity, there bifurcates a solution of the full nonlinear problem. To 
do this, we consider limR^o\n(R). We denote by P00, the infinite di­
mensional real projective space obtained by identifying antipodal 
points of the sphere \\u\\ = 1, and by catp«oF', the Ljusternik-Schnirel-
mann category of V' relative to P00, (cf. [lO]). 

LEMMA 2 (GENERALIZED COURANT MINIM AX PRINCIPLE). The eigen­
values Xn of the equation u~\Lu can be characterized as follows: 

(An)"1 = sup min (Lu, u) 
[•'!» v' 
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where V' is a set C-P00 such that catp* V'^n and [v']n is the class of 
all such sets in P00. 

THEOREM 4. From each eigenvalue of the equation u~\Lu there bi­
furcates at least one branch of nontrivial solutions of (1), (2). In par­
ticular from a simple eigenvalue there bifurcates exactly one such branch, 
and from an eigenvalue of multiplicity two there bifurcates at least two 
such branches. 

The importance of this result is that each critical point, degenerate 
or nondegenerate, of the quadratic variational problem of Lemma 2 is 
stable under perturbation by the nonlinear functional {Tu, u). To 
prove the first part of the theorem we use the characterization of 
X»(i£) and Xn given in Theorem 3 and Lemma 2, to show l im^o | Xn(-R) 
—An | = 0 . The qualitative study of solutions of small norm as a func­
tion of X was stated in [4]. At a double eigenvalue X0 of the linearized 
problem u ~\Lu we show that the solutions of small norm of the non­
linear problem can be reduced to the simple one-dimensional prob­
lem of ascertaining the number of real roots of an algebraic equation 
of degree 4 with real coefficients. This fact combines with the first 
part of the theorem to give the stated result. 

5. Buckling of thin curved elastic structures. Although the mathe­
matical phenomena associated with the buckling of curved elastic 
structures are known to differ considerably from those associated with 
plates, we indicate in this section that this fact is due, in large part, 
to the more subtle related variational problem. For simplicity, we 
consider the example of the buckling of an axially compressed cylin­
drical planel with initial constant curvature measured by the con­
stant K. The associated Von Karman equations for this problem are 

A2/ = - * [ « , A + Kuxx, 

A*u = -\uxx + [ ƒ , « ] - Kfxx, 

(2') u = ux = uv = ƒ = ƒ* = fy = 0 dû'. 

Here Q' is a rectangular domain in i?2. (If K = 0, these equations 
reduce to a special case of equations (1), (2).) 

Once again the analogue of Theorem 1 is valid. However, in this 
case, dA'R, the associated infinite dimensional manifold is homeo-
morphic to a sphere for small values of R and for large values of R. 
For such values of R, the Sturm-Liouville Theorem 3 holds although 
the proof requires an extra approximation argument. Finally the first 
part of the bifurcation Theorem 4 is valid. In this case, it is possible 
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to have nontrivial solutions of small norm for X <X» and in the vicinity 
Of Xn. 
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