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1. Introduction. Let A and B be linear operators generating semi­
groups exp(tA) and exp(tB) in a Hilbert space. Then under suitable 
conditions, 

txp(t(A + B)) = lim (exp((t/n)A) exp((t/n)B))n. 
n-*co 

This is the Trotter [6] product formula. Though it is a theorem in 
perturbation theory, it is related to the Feynman path integral repre­
sentation of solutions of partial differential equations and provides 
the best mathematical realization of this idea presently known. 

Feynman [ l ] considered the Schrödinger equation of quantum 
mechanics: 

i(du(t)/dt) = - (l/2m)Au(t) + Vu(t) 

for u(t) in L2(R*)t fr>r each /, and with initial condition u(0) =u. Here 
A is the Laplace operator, and F is a real valued function on R*. The 
solution when V=0 is 

u(%> t) = (exp((it/2m)A)u)(x) 

= {l-KÜ/myw j exp[£jrw(| x — y\*/t)]u(y)dy. 

If we take A = (i/2m)A and B= —iV, then as Nelson [4] observed, 
the Trotter formula gives 

u(x, t) = (exp((U/2m)A - itV)u)(x) 

= lim (exp((it/2mn)A) exp(— (it/n)V))nu(x) 

= hm I • • • I exp % >.i— w 
•-•. J J FL £ ï l 2 (t/n)* 

— V(XJ-I) > — u(x0) (2TÜ/ntn)~*nI2dx0 • • • dxn^h 

where xn = x, as a representation of the solution of the full Schrödinger 
equation. 
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This is formally an integral over the space of all paths #(r), O g r 
5>/, in R* such that x(t) ==x of 

exp f i f <—m (dx(r)/dr)2 - V(x(r))\ dr\ u(x(0)) 

which was Feynman's solution. 
Here we state a version of the product formula for semigroups in 

Hilbert space. We consider a certain class of perturbations B of A so 
singular that the sum A+B need not be densely defined when A and 
B are regarded as acting in the original Hilbert space. The formula is 
proved for abstract parabolic equations, and continuity in the mass 
parameter m gives a definition of Feynman integral for the Schrö-
dinger equation. Complete proofs of these results will appear else­
where. 

2. Perturbations of semibounded operators. Some constructions 
previously applied to partial differential equations by Lions [3] and 
Nelson [5] will be reviewed in this section. 

If K is a Hilbert space, the (conjugate) dual space K* is the Hilbert 
space of continuous antilinear functionals on K. We write (v, u) for 
the value of v in K* on u in K. 

An operator A is a linear transformation from a linear subspace 
D{A) of K to i£*. L(K, K*) consists of those operators A with D(A) 
= K and with A continuous from K to K*. 

DEFINITION. A sector of the complex plane is a closed convex subset 
bounded by two rays meeting a t 0. Let A be an operator and S a 
sector. A is said to be of type S if (Au, u)(ES for all u in D(A). A is 
said to be dissipative if it is of type left half-plane. 

DEFINITION. Let H be a Hilbert space with given inner product 
(v, u). Use this inner product to identify H with its (conjugate) dual 
space. Let H1 be another Hilbert space with HlC.H as a dense linear 
subspace such that the injection is continuous. (No distinguished 
norm in the family of equivalent norms on H1 is specified.) Let H~l 

be the (conjugate) dual space of H1. The dual of the given injection 
gives a continuous injection of H into JET""1 which we may use to 
identify H as a dense linear subspace of H~l. The triple fflCZHCH"1 

constructed in this way is called a scale of Hilbert spaces. 
If an operator A in H satisfies a suitable semiboundedness condi­

tion, it may be used to construct such spaces. 

PROPOSITION 1. Let A be a densely defined operator in H of type S, 
where 5— {o} is contained in the open left half-plane. Then there is a 
unique scale HlQ.HCLH~~l such that 
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(1) D(A)CHl and is dense in H1. 
(2) A maps D(A)QH1 continuously into i J ~ \ and hence extends by 

continuity to ÂÇzL(Hl, If"1) . 
(3) For each X>0, an equivalent norm on H1 may be given by \\u\\\ 

= Re((--iî+X)tt,tt). 

If an operator AQ generates a contraction semigroup exp tAo on Hf 

then for u in D(A0), Re(A0u, u)=d(\\exp(tAo)u\\2)/dt, evaluated at 
2 = 0, and this is ^ 0 . So A0 is dissipative. 

PROPOSITION 2. Let WQHQH-1 be a scale. Let A be a dissipative 
operator in L(H\ H^1). Let D(A0)=* {u^H1: AuEH}. Let AQ be the 
restriction of A to D(A0). Suppose that for some X>0 and c > 0 , 

| ( ( - i l + \)u,u)\ ^c\\u\\\. 

Then A0 is the infinitesimal generator of a contraction semigroup 
exp(L40), t^zQ, on H. 

EXAMPLE. Let H=L2(RZ). If F is a finite sum of real functions 
in various Lp spaces, 2SPS °°, then — {\/2m)A+V is defined on 
D(A) and is self-adjoint in H (T. Kato [2]). Thus (i/2m)A-iV is 
the infinitesimal generator of a unitary group on H. 

Since D(A) consists of continuous functions, if V is not in L2 near 
some point, then in general -~(l/2m)A+V is not self-adjoint in H. 
However, a perturbation theory based on the ideas of this section may 
sometimes be used to associate a self-adjoint operator in H with these 
operators, which may be regarded as their sum. 

Thus A is of type the negative real axis; so Proposition 1 applies. 
H1 is the Sobolev space of functions in L2 with first partial derivatives 
in L2. If F is a finite sum of real functions in various Lp spaces, 
3/2 Sp'è °°> then it can be shown that V defines an operator in 
L(Hl, H'1). (I/2m)A may also be regarded as an operator in 
L(Hlt H"1). So the sum (i/2m)A—iVis everywhere defined on H1 and 
Proposition 2 may be used in the proof that it has a restriction which 
generates a unitary group on H. 

3. The product formula. THEOREM 1. Let H be a Hubert space. Let 
A be the infinitesimal generator of a contraction semigroup in H. Assume 
that A is of type S, where S— {0} is contained in the open left half-plane. 
Let HlC.HCmH'"1 be the scale associated with A. A extends by continuity 
to an operator A in L(Hl, H~l). 

Let B be the infinitesimal generator of a contraction semigroup in H. 
Asssme that 
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(1) D(B)r\Hl is dense in H1 and B on this domain extends by con­
tinuity to an operator Ê in L{H1

i H~~l). 
(2) (—B)112 and (—J5*)1/2 may each be restricted to some domain 

dense in Hl on which they are continuous from H1 to H. 
Then Â+Ê has a restriction C which is the infinitesimal generator of 

a contraction semigroup in H. As n—><x> the products 

(exp((t/n)A) exp((t/n)B))n 

converge to exp tC in the strong operator topology. 

The proof of the first part of the result is immediate and illustrates 
the perturbation theory based on the ideas of the previous section. 
For since A and Ê are dissipative, C = Â + ÊÇELiH1, H~l) is also. 
In addition, 

| ( ( - C + X K u)\ ^ | R e ( ( - C + X K u)\ è R e ( ( - i + X ) w , u) 

and the last term, as is stated in Proposition 1, dominates a positive 
multiple of ||i*||î. Thus the hypotheses of Proposition 2 are satisfied, 
and Â + Ê has a restriction to H which generates a contraction semi­
group. 

THEOREM 2. Let A be the infinitesimal generator of a contraction semi­
group in H. Assume that a complex number a with \cr\ = 1 may be 
chosen so that a A is of type 5, where S— {o} is contained in the open 
left half-plane. Let HiQIKZH-1 be the scale associated with a A. Let 
a be any complex number such that aA is dissipative. 

Let B be a dissipative operator in L^H1, H~l). Assume that some 
norm f or H1 of the form ||w||? = Re(( —<xÂ+k)u, u) may be chosen so 
that the operator norm of B is then strictly less than \a\. 

Then aÂ+BÇzLiH1, H"1) has a restriction to an operator Ca which 
generates a contraction semigroup exp(^C«). exp(2C«) is strongly con­
tinuous in a for fixed t. 

4. Application to the Schrödinger equation. Let the scale IPCH 
<ZH~X consist of the Sobolev spaces of the previous example. We 
assume F to be a finite sum of real functions in various LP(RS) 
spaces, 3/2 SP^ °°. This implies that V is bounded from Hl to H"1 

with sufficiently small norm. In order to ensure that F a s an operator 
in H has domain dense in H1, we require that V is locally in L2 except 
on a closed set of capacity zero. 

Then the above results may be used with A —iA, a = l/(2(m-{-ie)), 
and B= — iV. Ca is obtained by restricting Ca=aÂ + Ê, the sum of 
the corresponding operators in LÇH1, H"1). (The scale Hl(ZH(ZH~l 
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is always that associated with — £<4=A.) When e > 0 , Theorem 1 
applied to aA and B gives 

lim (exp((t/n)aA) exp((t/n)B))n = exp tCa. 

Then Theorem 2 shows that when e—»0 + , exp tCa converges to the 
same unitary group as was found in the example. We conclude that 
for t^O, 

ƒ f r ^ C1 I */ — */-i|2 

• • • I exp \i 2^ <— (m + ie) 
. , . - J L i-i v 2 Q/n)2 

— F(^y-i) > — U(%Q) (2irit/n(m + ie))~*nl2dxQ • • • dxn-h 

where #» = #, converges in L2 to a function u(x, t) which may be re­
garded as the solution of the Schrödinger equation with initial condi­
tion u(x, 0)=u(x). 

I t is a pleasure to thank Professor Edward Nelson for his generous 
counsel. 
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