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Let G be a cyclic £-group, K a field of characteristic py and KG the 
group algebra of G over K. The representation ring a(KG) is gener­
ated by symbols [ikf], one for each isomorphism class {M} of 
finitely generated left i£G-modules, with relations 

[M] + [Mf] = [M ® M']} [M][N] = [M ®K N]. 

The representation algebra A (KG) is defined as C®za,(KG), where 
Z is the ring of rational integers, C the complex field. The aim of this 
note is to give a simple proof of the following theorem of Green [ l ] . 

THEOREM. The representation algebra A (KG) is sernisimple. 

Since G is a cyclic £-group, the algebra A (KG) is finite dimensional 
(and commutative), having C-basis {vi, • • • , vq}, where q= [G: l ] , 
and where ^ = [ 1 ^ ] . Here, Vr denotes the unique indecomposable 
KG-module of dimension r. We set Ao:=R®z a(KG), where R is the 
real field. Then A(KG) = C®R A^ and it suffices to prove that A0 is 
sernisimple, or equivalently, that A o has no nonzero elements of 
square zero. 

By the components of a module we mean the indecomposable sum-
mands in a direct sum decomposition of the module. 

LEMMA 1 (ROTH [4], RALLEY [3]). The number of components of 
Vr® V8 is precisely min(r, s). 

PROOF. Let Hr be the rXr matrix with l 's above the main diagonal 
and zeros elsewhere, let Er be the rXr identity matrix, and let X be 
an indeterminate over K. Then the number of components of Vr® V9 

is the same as the number of invariant factors of (KEr+Hr)
8 different 

from 1. This easily yields the desired result. 
Let us write 

Then the coefficients {ar8t\ are nonnegative integers, and Lemma 1 
asserts that 
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Q 

22 ar»t = min (r, s), 1 | r, ^ q. 

LEMMA 2. 77^ quadratic form 

] £ min (r, s)XrX9 

is positive definite. 

PROOF. One verifies that the given form coincides with 

(Xx+ • • • +xqy+(x2+ . . . +x,)*+ . . . +x*. 
We now show that if u £ A o satisfies w2 = 0, then necessarily # = 0. 

Write # = X X i Wr , a r £ i ? . Then 

r,« r , t , t 

whence 

22 ocrot8ar3t = 0, 1 ^ / ^ 9. 

Summing on t, we obtain 

22 m * n (f> )̂ara< = 0, 

so by Lemma 2, cer = 0 for 1 ̂ r^q. This completes the proof. 
The above technique has also been used by Hannula [2]. 
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