THE GROTHENDIECK GROUP FOR STABLE HOMOTOPY IS FREE

BY PETER FREYD1

Communicated by E. Spanier, July 5, 1966

Let H_n^m be the set of homotopy types of base-pointed finite complexes of dimension $\leq m$ and connectivity $\geq n$. We shall always assume that $2n \geq m$, in other words, that we are working in the "stable range".

 H_n^m is closed under the "wedge" operation $(X \vee Y)$ is obtained by identifying the base points in the disjoint union of X and Y). Chang [1] has classified the wedge indecomposables in the case $m \le n+3$ and has shown that a unique wedge decomposition theorem holds in H_n^{n+3} , $n \ge 3$.

PROPOSITION 1. Unique wedge decomposition fails in H_5^{10} . Indeed (H_5^{10}, \vee) fails to be a cancellation semigroup. The same pathology holds for any H_n^m , $m \ge n+5$, $2n \ge m$.

The easiest example: Let $\nu \in \pi_9(S^6)$ be a map of order 8. Let $\operatorname{Cone}(\nu)$ be its mapping cone. Then $S^6 \vee \operatorname{Cone}(\nu) \simeq S^6 \vee \operatorname{Cone}(3\nu)$ but $\operatorname{Cone}(\nu) \simeq \operatorname{Cone}(3\nu)$. (The isomorphism uses only that 3 is prime to the order of ν , the nonisomorphism uses only that 3 is not congruent to ± 1 mod the order of ν . ν could not be of order 2, 3, 4, or 6. Hence a similar example is avoided in the range covered by Chang.)

Let C_n^m be the cancellation semigroup obtained from (H_n^m, \vee) by defining $X \equiv Y$ if there exists Z such that $X \vee Z \simeq Y \vee Z$.

THEOREM 2. $X \equiv Y$ iff for the bouquet of spheres, B, with the same Betti numbers as X it is the case that $X \lor B \simeq Y \lor B$.

It follows that the inclusion $H_n^m \to H_n^{m+1}$ remains a monomorphism when we pass to $C_n^m \to C_n^{m+1}$. The suspension functor preserves wedges and hence we obtain a homomorphism from (H_n^m, \vee) to (H_{n+1}^{m+1}, \vee) . By Freudenthal's theorem $H_n^m \to H_{n+1}^{m+1}$ is an isomorphism. We obtain a family of monomorphisms $C_n^m \to C_n^{m'}$, $n \le n'$, $m \le m'$ the direct limit of which we'll call S. Each C_n^m is a sub-semigroup of S and it may be noted that each of the statements below about S and its ambient group specializes nicely to C_n^m and its ambient group.

¹ This research was supported in part by grant GP 4252 from the National Science Foundation.

COROLLARY 3. Given $\gamma \in \pi_n(S^m)$, $n \neq m$, $\gamma \neq 0$ then [Cone(γ)] is indecomposable in S.

PROPOSITION 4. S is not free, i.e. it is not a unique factorization semigroup.

The easiest example. Let $\alpha \in \pi_q(S^6)$ be a map of order 3, $\nu \in \pi_g(S^6)$ of order 8. Then $\operatorname{Cone}(\alpha) \vee \operatorname{Cone}(\nu) \simeq S^6 \vee S^{10} \vee \operatorname{Cone}(\alpha + \nu)$. The example lives in H_5^{10} . For any γ , $\delta \in \pi_n(S^m)$, $n \neq m$, γ , δ of co-prime orders the same pathology may be exhibited.

The above example depends upon the mixing of prime integers. We may explicate that dependency by defining a space X to be p-primary (p a prime integer) if there exist maps $f: B \rightarrow X$, $g: X \rightarrow B$, where B is the bouquet of spheres with the same Betti numbers as X, such that $gf = p^n \cdot 1_B$, some n.

Spheres are p-primary for any p. The only spaces which are p-primary for more than one p are bouquets of spheres.

Let S_p be the cancellation semigroup obtained by restricting attention to p-primary spaces.

THEOREM 5. S_p is free, i.e. a unique factorization semigroup. Moreover [X] is indecomposable in S_p iff X is wedge indecomposable.

(It is known that a space in the stable range is wedge indecomposable iff its only idempotent endomorphisms are 0 and 1 [2].)

Let G be S made into a group (the Grothendieck group for stable homotopy). Let $B: G \to G$ be the map which sends [X] to the bouquet of spheres $[B_X]$ with the same Betti numbers as X. B is idempotent. Let G_S be its image, G^* its kernel. $G = G_S \oplus G^*$. Note that G_S is clearly freely generated by the spheres. Let G_p^* be the subgroup of G^* generated by elements of the form $[X] - [B_X]$ where X is p-primary. Note that S_p made into a group is $G_S \oplus G_p^*$. Hence G_p^* is free

THEOREM 6. G^* is the internal direct sum of the G_p^{*} 's. G is free. It is freely generated by the set $\{S^n \mid S^n \text{ an } n\text{-sphere}\} \cup \{[X] - [B_x] \mid X \text{ a wedge indecomposable primary space}\}.$

The next was a contention of Milnor.

THEOREM 7. [X] - [Y] has zero component in $G_S \oplus G_p^*$ iff X and Y have the same Betti numbers and there exists $f: X \to Y$ such that $H_*(f; \mathbf{Z}_p)$ is an isomorphism where \mathbf{Z}_p can be interpreted either as the prime field or the p-adic integers.

COROLLARY 8. With the smash product as multiplication, G_p^* is an ideal.

86 P. FREYD

The proofs rely heavily upon the representation of the stable homotopy category S (of which G is the Grothendieck group) as the full subcategory of projectives in a Frobenius category F [3]. (A Frobenius category is an Abelian category in which projectives and injectives coincide and in which there are enough of them in both senses.) Statements 1 through 4 require repeated use of the Schanuel lemma applied in F. Theorem 5 depends upon a suitable modification of the Nakayama lemma. Theorem 6 uses the Schanuel lemma to represent the Grothendieck group in another more easily handled Grothendieck group arising from F. For Theorem 7 it is necessary to localize F by factoring out, a la Gabriel, the Serre class of objects whose identity maps are of finite order prime to p. This p-localization of F has many nice properties: it is Frobenius; its indecomposable injectives are spaces and they are absolutely indecomposable, i.e. are essential extensions of every nontrivial subobject; each of its objects has an injective envelope; it is self-dual and hence each of its objects has a projective co-envelope.

We obtain an almost-answer to the question which inaugurated the investigation: can mapping cones in the stable range be identified by their homotopy properties?

Theorem 9. If
$$X \xrightarrow{f} Y \longrightarrow Z \longrightarrow SX \xrightarrow{Sf} SY$$

is such that an exact sequence of abelian groups results whenever a corepresentable functor is applied (or if preferred, whenever any cohomology theory is applied) then [Z] is equal to [Cone(f)] in the Grothendieck group, i.e. $Z \equiv Cone(f)$.

There does exist a sequence

$$S^9 \xrightarrow{\nu} S^6 \longrightarrow \text{Cone } (3\nu) \longrightarrow S^{10} \xrightarrow{S\nu} S^7$$

satisfying the hypothesis. Hence Z need not be of the same homotopy type as Cone(f).

BIBLIOGRAPHY

- 1. S. C. Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc. Ser. A, 202 (1950), 253-263.
- 2. P. Freyd, Splitting homotopy idempotents, Proceedings of the Conference on Categorical Algebra, Springer-Verlag, 1966 (to appear).
- 3. ———, Stable homotopy, Proceedings of the Conference on Categorical Algebra, Springer-Verlag, 1966 (to appear).

University of Pennsylvania