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Let K be a field of characteristic 0 and Der K denote the vector
space over K of all derivations of K. A classical theorem of Jacobson
[2], strengthened by the author [1], asserts that the subfields L of
K with LDK? and [L:K| finite are in natural one-one correspondence
with the finite dimensional “restricted” subspaces of Der K, i.e.,
with those subspaces V such that dimg V< » and such that ¢SV
implies $?& V; the correspondence associates to L the space Dery K
of all derivations vanishing on L. (It follows that a finite dimensional
restricted subspace is necessarily a Lie algebra.) The problem of ex-
tending this result after the fashion of Krull to fields LDK? with
[K:L] possibly infinite has been raised explicitly (cf. [3, p. 191]) but
not answered. The purpose of this note is to show that the obvious
conjecture in fact holds.

1. The Krull topology and statement of the main theorem. Let
Der K be topologized by taking as a base for the neighborhoods of
zero those subspaces V of the form Dery K with L a finite extension
K?(xy, + + -, %,) of K?; this will be called the Krull topology. The
closure of an arbitrary subspace V in the Krull topology will be de-
noted by V. Given an arbitrary element ¢ of Der K, the set of all
xE€ K which are constants for ¢, i.e., such that ¢(x) =0, will be de-
noted K;. We shall further denote by D, the smallest restricted sub-
space of Der K containing ¢, and by D, its closure.

It is immediate that the closure of a restricted subspace is again
restricted, and that a subspace of the form Dery K is both closed and
restricted.

THEOREM. Let K be a field of characteristic p#0. Then the subfields
L containing K? are in natural one-one correspondence with the closed
restricted subspaces of Der K, the correspondence assigning to L the
space Der LK. (It follows that a closed restricted subspace is in particular
a Lie algebra.) Further, every closed restricted subspace is of the form
D, for some ¢ in Der K.

2. Proof of the theorem. Before the proof we give several lemmas.

1 The author wishes to acknowledge the support of the National Science Founda-
tion under contract GP-3683.
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Throughout, K will denote the fixed field of characteristic p.

LEMMA 1. Let {Ka}ar be a collection of subfields of K such that
(1) K.DK? for all a, and (ii) for all a and B in I there is a vy such that
K,C(KaNKp). Set k=NK,, and let x1, - - - , x, be a finite set of ele-
ments of K which are p-independent over k (i.e., such that the monomials
aft -« - xf 0=5i,<p are linearly independent; cf. [5, p. 129]). Then
X1, ¢, Xa are already p-independent over Ko, for some o,

ProoF. The proof for n=1 is trivial, since condition (i) on the K,
implies that given «, either x; is p-independent over K, or x; is in
K.; since % ENK,, it follows that for some ay, %1 &Ko, The proof
now proceeds by induction. Suppose for some a3 that xy, - - -, %,
are p-independent over k,,. replacing every K, by KoMK, we may
assume, without loss of generality, that xy, - - -, x,-1 are p-inde-
pendent over K, for all . We must show that for some o we have
Xy EKag(®1y ¢ ¢y Xp—1). But Ka(xy, + + -, £,01) is naturally iso-
morphic to K, ®ik(x1, - - + , %n—1) for all ¢, whence NK,(x1, - -+, Xn1)
=(an) B k(xly R xn—1)=k®k (xl, R xn—l)'_"k(xl’ ) xn—l)'
Since the latter does not contain x,, it follows that x,€
Ka (%1, - -+, x,01) for some o, as required. This completes the induc-
tion and the proof.

The following is essentially contained in [1, bottom of p. 563].

LEMMA 2. Let K*Ck, {xa} be a p-basis for K over k, and ¢ be an
element of DeryK such that ¢(x.) =x5t, all o. Then Ky=k.

ProoF. It is sufficient to show that if M is any monomial of the
form M=x% ... af, 0=Zj,<p, then ¢(M)=0 implies M=1. Set
x2=Ns. Then ¢(M)=Nayj1+ * + + +Ns jn. Since the x, are p-inde-
pendent over %, the A\, are surely linearly independent over the prime
field. Therefore ¢(M) =0 if and only if ji= - - - =0, i.e., if and only
if M=1. This ends the proof.

LeMMA 3. Let the elements of Der K be partially ordered by setting
¢>¢' if KsCKyr. Suppose V a closed and restricted subspace of Der K,
and let {¢a}act be a linearly ordered subset of V. Set k=NK,,. Then
(1) VDODeriK and (2) there exists a ¢V such that Ky=Fk. This ¢ is
then an upper bound in the partial order for the ¢., whence by Zorn's
lemma, V contains a maximal element.

Proor. Since V is closed, to show that VD Der:K, it is sufficient
to show that if ¢ is in Der K and if x4, - - -, %, are arbitrary elements
of K in finite number, then there exists a &€V with 6(x;) =¢(x;)
i=1, - - -, n. Without loss of generality, we may assume that for
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some m, ¥1, * * - , X¥n are p-independent over k and that xp41, « * *, Xp
€Ek(x1, * * +, Xn). By Lemma 1, there exists an @ such thatxy, - + -, %
are p-independent over K,, and by Lemma 2 of [1], there exist in
Dy, —and hence in V—derivations ¢y, - -+, ¢» such that ¢;(x;) =48;j,

1,j=1, - - -, m. It follows that Dy, contains a 6§ taking on arbitrary
values on x3, - - -, m, whence in particular, such that 6(x;) =¢(x;),
i=1,---,m. Since K, Dk, it follows that 60(x:)=¢(x;) for
1=m-+1, - - -, n as well, proving (1). It follows from Lemma 2 that

Der,K contains a ¢ such that Ky =k. This ends the proof.

LEMMA 4. Let V be a closed restricted subspace of DeryK, and sup-
pose given $CV, yEK such that $(y) =1. Let {y, %a}acr be a p-basis
of K over K?. Then the derivation 0 defined by 6(y) =1, 0(x,) =0, all
acl,isin V.

Proor. By Lemma 2 of [1], for any finite subset %, * * - , %a, Of
{xa} , if we write y =1x,,, there exist ¢y, - - + , ¢, such that ¢;(xe,) = 8:j;
in particular, ¢1(y) =1, ¢1(x.,) =0, 2=2, - - - , n. It follows that for
any finite extension L of K? contained in K there exists a ¢y in V
coinciding with 6 on L. Since V is closed, it follows that 6 is in V.

We come now to the

PRrROOF OF THE THEOREM. Let V be a closed restricted subspace of
Der K, ¢ be a maximal element of V, and set Ky=L. Then
VDO Derp K. Suppose, if possible, that Vs Der K. Then there exists
a y&L and ¢ &V such that Y (y) #0; we may suppose that ¢(y) =1.
Let {x.} be a p-basis of K over L and {y, 25} be a p-basis of L over
K?. Then V contains a 6, by Lemma 4, such that 6(y) =1, 0(x.)
=0(z) =0, all @, B. Set L'=K?({z}), so that L'(y)=L. Then
0, p&Der K. Let w be the element of Der K defined by w(x,) =x5+?,
all @. Then w+y?+10 has L' as its field of constants by Lemma 3,
contradicting the maximality of ¢. It follows that V=Derg,K for
any maximal ¢ in V. Since it is trivial that any subspace of Der K
of the form Der K is closed and restricted, it follows that L—Der K
is a one-one correspondence between those subfields L of K with
K?CL and the closed restricted subspaces of Der K. Finally, observe
that if ¢ is maximal in V, then D, is also closed, restricted, and there-
fore coincides with Dergy,K = V. This ends the proof.

3. p-convexity (Shimura-Ponomarenko). If x is an arbitrary ele-
ment of K, then we shall denote by H, the set of all ¢ in Der K such
that ¢(x) =0; H, is the “hyperplane” in Der K determined by x and
is an open set in the Krull topology. Following a suggestion of
Shimura, a subspace V of Der K has been called p-convex by Pono-
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marenko if N(V+H,) =V, the intersection being taken over all x€K.
For any subspace V of Der K, we may defined the p-hull of V,
denoted hull V, to be N(V+H,). An element ¢ of Der K is then in
hull Vif and only if for every x its H,-neighborhood, ¢+ H ., meets V.
It follows that hull VO7V. Since, as may be readily seen, hull(hull V)
=hull V, it follows that hull V is closed in the Krull topology.

Ponomarenko [4] has proved that a necessary and sufficient condi-
tion that a subspace V of Der K be of the form Der.K for some sub-
field L of K containing K? is that V be p-convex, i.e., that V be its
own hull. While Ponomarenko’s result is, as he shows, a simple and
direct consequence of the work of Jacobson, it may also be of interest
to observe that the result follows immediately from our main
theorem. Indeed, all that need be shown is that if V is p-convex then
V is restricted. To this end observe that if V is p-convex then ¢E&V
and ¢>¢' imply ¢’ © V. Now for any xin K, define an element ¢, of V
by setting ¢, =¢ if ¢(x) =0 and ¢, =¢'(x)¢(x)"'¢ otherwise. Since by
definition ¢>¢’ if and only if ¢(x) =0 implies ¢'(x) =0 for all %, it
follows that ¢, is in the H,-neighborhood of ¢’ for all x, showing that
¢’ Chull V=7V, as required. Finally, for any ¢ we have ¢>¢?, show-
ing that V p-convex implies V restricted, as asserted.

If we define a subspace V of Der K to be a lattice if $&V and
¢>¢' imply ¢’E V, then we have in fact observed the following
trivial implications: V p-convex=V closed, lattice=V closed, re-
stricted. Since our main theorem implies that a closed restricted V
is of the form Der.K, and since any subspace of the latter form is
trivially p-convex, it follows that the implications are all equivalences.
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