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Introduction. H. B. Cohen has constructed [2] an injective (linear) 
envelope eiE for every real or complex Banach space E, and shown 
that it is unique up to a linear isometry. The real case of Cohen's 
result provides most of the answer to a question I had asked, which 
concerned the injective metric envelope emE. It is known that in real 
Banach spaces the metric and metric linear notions of "injective" 
coincide [ l ] , [6]. The question whether the metric space emE and the 
Banach space eiE coincide is unambiguous, at least in the sense that 
the metric structure of a real Banach space determines the linear 
structure [5]. The answer: 

THEOREM 1. For a real Banach space E, eiE = emE. 

I cannot deduce this from Cohen's results on ei, but I get it from 
my results on em [4]. Either approach yields the real case of 

THEOREM 2. A linear autoisometry of a Banach space E can be ex­
tended in only one way to a linear autoisometry of eiE. 

However, the proof in the manner of Cohen covers both cases and 
is shorter. 

Each approach proves a strengthened form of Theorem 2. By a 
lemma of Cohen [2], any other linear extension has norm > 1. In the 
real case, any nonlinear extension increases some distance. 

Proofs. Let us do Theorem 2 first. It suffices to show that the 
subspace of all points of eiE left fixed by a linear autoisometry T 
different from the identity lies in an injective proper subspace. Now 
the form of eiE is known (Nachbin-Goodner-Kelley-Hasumi Theo­
rem, re-proved in [2]); it is the space C(X) of all continuous scalar-
valued functions on an arbitrary extremally disconnected compact 
space. The form of T is easy to determine; it must consist of com­
position with an autohomeomorphism r of X and multiplication by a 
continuous function / on X to the scalars of absolute value 1. (This 
is readily deduced from the characterization of the extreme points of 
C(X)* [3].) 

Since T V 1 , either r ^ l or T = 1 but / T ^ I . In the former case there 
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is a nonempty open-closed set U of X disjoint from r(Z7), and the 
fixed points of T lie in the subspace of all ƒ satisfying t(u)f(j(u)) =f(u) 
for u in U. In the latter case there is a nonempty open-closed set U 
of X on which t—1 has no zero, and the fixed points of T must vanish 
on U. In either case an injective proper subspace C(X— U) contains 
the fixed points of T. Theorem 2 is proved. 

For the linear strengthening, Cohen's lemma [2] says that if an 
extension T: eiE—^Y of an isometric embedding E-^Y has norm 1, 
it is an isometric embedding. The image is then injective; in the 
present case, this means T is an autoisometry. 

Theorem 1 requires some details of the construction [4] of emX. 
A real-valued function ƒ on a metric space X is called extremal if it is 
pointwise minimal subject to f(x)+f(y) ^d(x, y). The extremal func­
tions on X form a metric space Y with the distance d(f, g) 
= s u p | / ( x ) - g ( x ) | . 

Defining e: X-+Y by e(x)(x')=d(x, #')> one has an injective en­
velope. A uniqueness theorem is given in [4], but it can be strength­
ened. The distance from ƒ G F to e(x) is f(x) [4]. Thus the isometry 
connecting two envelopes e: X-+Y, er: X—»F' is unique. Since the 
functions are minimal, one has a strong version of Theorem 2: every 
extension over emX of an autoisometry of X, except one extension 
(which is an autoisometry), increases some distance. Note also: every 
similitude of X can be extended uniquely to a similitude of emX. 

Further remarks: since a subspace Z of emX containing X has the 
same injective envelope, the extremal functions on Z are precisely 
the unique extensions of extremal functions on X. Z is injective if and 
only if every extremal function on Z has a zero. 

For Theorem 1, it suffices to exhibit an isometry of emE with a 
Banach space taking E to a linear subspace. We begin with the well-
known result [7] that E can be linearly isometrically embedded in 
some injective Banach space I. 

Consider the subspaces F oi I containing E such that an injective 
metric envelope e : E—» Y can be extended to an isometric embedding 
ƒ: F—»F, partially ordered by inclusion. As injective metric spaces 
are complete [ l ] , and the mappings ƒ are unique, Zorn's Lemma ap­
plies: there is a maximal such subspace, Z. We are done if every ex­
tremal function on Z has a zero. Suppose the contrary; let g be a 
positive extremal function on Z. Considering Z as a subspace of its 
injective envelope F, extend the inclusion i: Z—>I over F. g deter­
mines a point of F, mapped to a point p of I. For every z in Z, d(p, z) 
^g(z). Since d(p, x)+d(p} y)^d(x, y) and g is extremal, d(p, z) is 
g{z). For every element q = ap+x of the subspace G generated by Z 
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and p, the function fq given by d(q, z) on Z is extremal; it is just g, 
transformed by the similitude z—>az and the isometry z—>z+x. More­
over, the distance between any two points g, r of G is just sup| fq—fr\ i 
this is obvious if the line joining q and r meets Zf and when it is 
parallel one can approximate the segment qr by segments of lines 
meeting Z. Hence e: E—>Y extends to an isometric embedding of G 
in F, contradicting the maximality of Z. Theorem 1 is proved. 

Concluding remarks. A one-dimensional complex Banach space, 
though linearly injective, is not metrically injective, and one easily 
deduces that none of them are metrically injective. For a complex 
Banach space E and the real Banach space €WE, the operations of 
complex scalars, as a semigroup of similitudes of E, extend over emE. 
The extension must fail to preserve the additive structure of the 
scalars. 
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