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The thickness t(Kp) of the complete graph Kp with p points is the 
minimum number of planar subgraphs whose union is Kp. The pur­
pose of this note is to outline a result which determines t(Kp) for four 
of every six consecutive integers p. A complete proof of this result 
will be published elsewhere. 

THEOREM. If £E== — 1, 0, 1, 2 (mod 6), then 

(1) W = L 6 J ' 
In proving this theorem, we prescribe a labelling of n + 1 plane 

graphs, for any positive integer n. All the graphs contain the same 
6n + 2 points, but are constructed so that no two have a common line. 
Two of the points will be denoted by v and v', and the others as 
Uk, Vk> Wk, u£ , Vk , Wk for & = 0, 1, • • - , n — 1. All but one of the graphs 
are of the type indicated in Figure 1, where each of the six numbered 
triangles in Gk contains n — 1 other points and 3 (n — 1) lines so that its 
interior is isomorphic with graph H. 

The points of the n graphs Gk are labelled using a n n X w matrix 
A = (a*y), whose entries are residue classes modulo n, where 

(2) aiJ = ((-1)4[y] + (-1) '[y]) (™>d n) 

with [x] indicating the greatest integer function as usual. We remark 
that one of the important properties of A is that each residue class 
appears exactly once in each row and each column. 

The n—1 points inside triangle ulvuwl of graph Gk are labelled 
using the column, say the j th , whose first entry is a\j = k as follows: 
if üij = hy the (i— l)st point down from Vk is labelled ^ o r v/t according 
as min {i, j) is odd or even. The points inside triangle vkUkWk are 
similarly labelled, using u{ and uh instead of vh and vi respectively. 
The points inside the other triangles are also labelled analogously. 

Now, in the union of these n labelled graphs Gk, aside from v and 
v', each point is adjacent with all but one of the other points. More-
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n-l interior points 

FIGURE 1 

over, for each integer k, the points ukl vk, and wk are not adjacent to 
uk

f, vk', and wk , respectively. Also, v and 2/ are each adjacent with 
half of the other points. A new graph G is constructed as in Figure 2, 
in which each of the 6 ^ + 2 points is adjacent to all of the points not 
adjacent to it in any of the other n graphs. Therefore the union of 
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FIGURE 2 

the graph G with the n graphs Gk is complete. Thus, t{K^n+^) ^n + 1. 
From Euler's polyhedron formula it follows that /(i£6n-i) ^n + 1. The 
theorem follows at once from these two inequalities. 
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