ON THE THICKNESS OF THE COMPLETE GRAPH¹

BY LOWELL W. BEINEKE AND FRANK HARARY Communicated by J. W. T. Youngs, January 22, 1964

The thickness $t(K_p)$ of the complete graph K_p with p points is the minimum number of planar subgraphs whose union is K_p . The purpose of this note is to outline a result which determines $t(K_p)$ for four of every six consecutive integers p. A complete proof of this result will be published elsewhere.

Theorem. If $p \equiv -1$, 0, 1, 2 (mod 6), then

$$t(K_p) = \left\lceil \frac{p+7}{6} \right\rceil.$$

In proving this theorem, we prescribe a labelling of n+1 plane graphs, for any positive integer n. All the graphs contain the same 6n+2 points, but are constructed so that no two have a common line. Two of the points will be denoted by v and v', and the others as $u_k, v_k, w_k, u_k', v_k', w_k'$ for $k=0, 1, \cdots, n-1$. All but one of the graphs are of the type indicated in Figure 1, where each of the six numbered triangles in G_k contains n-1 other points and 3(n-1) lines so that its interior is isomorphic with graph H.

The points of the n graphs G_k are labelled using an $n \times n$ matrix $A = (a_{ij})$, whose entries are residue classes modulo n, where

(2)
$$a_{ij} = \left((-1)^i \left[\frac{i}{2} \right] + (-1)^j \left[\frac{j}{2} \right] \right) \pmod{n}$$

with [x] indicating the greatest integer function as usual. We remark that one of the important properties of A is that each residue class appears exactly once in each row and each column.

The n-1 points inside triangle $u_k'v_kw_k'$ of graph G_k are labelled using the column, say the jth, whose first entry is $a_{1j} = k$ as follows: if $a_{ij} = k$, the (i-1)st point down from v_k is labelled v_k or v_k' according as min $\{i, j\}$ is odd or even. The points inside triangle $v_ku_k'w_k$ are similarly labelled, using u_k' and u_k instead of v_k and v_k' respectively. The points inside the other triangles are also labelled analogously.

Now, in the union of these n labelled graphs G_k , aside from v and v', each point is adjacent with all but one of the other points. More-

¹ This research was supported by National Science Foundation grant GP-207.

over, for each integer k, the points u_k , v_k , and w_k are not adjacent to u_k' , v_k' , and w_k' , respectively. Also, v and v' are each adjacent with half of the other points. A new graph G is constructed as in Figure 2, in which each of the 6n+2 points is adjacent to all of the points not adjacent to it in any of the other n graphs. Therefore the union of

the graph G with the n graphs G_k is complete. Thus, $t(K_{6n+2}) \leq n+1$. From Euler's polyhedron formula it follows that $t(K_{6n-1}) \geq n+1$. The theorem follows at once from these two inequalities.

University of Michigan and University College, London, England