NORM DECREASING HOMOMORPHISMS OF GROUP ALGEBRAS¹

BY FREDERICK P. GREENLEAF

Communicated by G. A. Hedlund, February 10, 1964

- 1. Introduction. Let G be a locally compact group, let $C_0(G)$ be the Banach space of all continuous complex-valued functions on G which vanish at infinity, and let $M(G) = C_0(G)^*$. In [2] Glicksberg has identified all subgroups of the unit ball $\Sigma_{M(G)}$ in M(G) for locally compact abelian groups G, and all positive subgroups of $\Sigma_{M(G)}$ when G is a compact group. In a subsequent paper [3], he used these results to give the structure of norm decreasing homomorphisms $\phi \colon L^1(F) \to M(G)$ in the situations when (1) F is locally compact and G is locally compact abelian, or (2) F is locally compact, G is compact, and $\mu \ge 0 \Rightarrow \phi(\mu) \ge 0$ for $\mu \in L^1(F)$. The results given here identify all subgroups of $\Sigma_{M(G)}$ for any locally compact group G, and give the structure of all norm decreasing homomorphisms $\phi \colon L^1(F) \to M(G)$ where F and G are locally compact groups. At the same time we show that every homomorphism of this type has a natural extension to a norm decreasing homomorphism $\phi \colon M(F) \to M(G)$.
- 2. Subgroups of the unit ball in M(G). The structure theorems are based on the following observations about measures in M(G). If $\mu \in M(G)$ we let $s(\mu)$ denote the support of μ and let $|\mu|$ denote the total variation of μ [1, p. 122]. The norm of $\mu \in M(G)$ is indicated by $|\mu|$.

Theorem 1. If G is a locally compact group and if μ , $\lambda \in M(G)$ are such that $||\mu * \lambda|| = ||\mu|| \cdot ||\lambda||$, then

(1)
$$s(\mu * \lambda) = (s(\mu)s(\lambda))^{-}$$
,

(2)
$$|\mu * \lambda| = |\mu| * |\lambda|$$
.

In Glicksberg [2], similar results are proved in limited situations: (1) is proved for positive measures, and (2) is proved for measures in a subgroup of $\Sigma_{M(G)}$ when G is compact.

If K is a compact subgroup of a locally compact group G, we denote normalized Haar measure on K as m_K . If K is the collection of continuous unimodular multiplicative functions on K and if $\rho \in K$, then the measure ρm_K is defined such that $\int_G \psi d\rho m_K = \int_K \psi \cdot \rho dm_K$ for $\psi \in C_0(G)$.

¹ This research was partially supported by Air Force Office of Scientific Research Grant No. AFOSR-407-63.

THEOREM 2. If G is a locally compact group and if $\mu \in M(G)$ is such that $\mu * \mu = \mu$ and $\|\mu\| = 1$, then there is a compact subgroup $K \subset G$ and a function $\rho \in K^{\hat{}}$ such that $\mu = \rho m_K$.

This is an easy consequence of Theorems 1 and 2. It was also proved by Glicksberg in [2] for compact G, and by Loynes [4] for locally compact G if $\mu \ge 0$. This theorem gives the structure of the unit in any subgroup of $\Sigma_{M(G)}$ for locally compact G. Next we give the complete structure of such subgroups, and then go on to identify all subgroups of $\Sigma_{M(G)}$.

THEOREM 3. If Γ is a subgroup of $\Sigma_{M(G)}$ for locally compact group G, then $H_0 = \bigcup \{s(\mu) : \mu \in \Gamma\}$ is a subgroup of G and the unit of Γ is of the form $i = \rho m_K$ where K is a compact subgroup of G, $K \subset H_0$, K is normal in H_0 , and $\rho \in K^{\hat{}}$. Furthermore, there is a subgroup $\Omega \subset S \times G$ such that $H_0 = \{g \in G: (\alpha, g) \in \Omega \text{ for some } |\alpha| = 1\}$ and $\Gamma = \{\alpha \delta_g * \rho m_K: (\alpha, g) \in \Omega\}$.

Here S is the circle group, $S \times G$ is the usual product group, and if $g \in G$ we let δ_g denote the point mass concentrated at g.

PROPOSITION 4. If G is a locally compact group and if Γ is a subgroup of $\Sigma_{M(G)}$, let $H_0 = \bigcup \{s(\mu) : \mu \in \Gamma\}$ and write the unit of Γ as $i = \rho m_K$ where $K \subset H_0$ is a compact subgroup of G which is normal in H_0 , and $\rho \in K^{\hat{}}$. Then $K_0 = \text{Ker}(\rho)$ is a compact subgroup of G which is normal in both H_0 and K. Furthermore, K is central in H_0 (mod K_0) so that $K/K_0 \subset \text{cent}(H_0/K_0)$.

This property is necessary since we must have $\rho m_K * \delta_g * \rho m_K = i * (\delta_g * \rho m_K) = \delta_g * \rho m_K$ for all $g \in H_0$ if Γ is to have the structure given in Theorem 3 and be closed under convolution with $i = \rho m_K$ is an identity. Now the subgroups of $\Sigma_{M(G)}$ can be catalogued explicitly.

THEOREM 5. Let G be a locally compact group and let Γ be a subgroup of $\Sigma_{M(G)}$ with unit $i = \rho m_K$. Then we have the following structural properties:

- (1) $H_0 = \bigcup \{s(\mu) : \mu \in \Gamma\}$ is a (not necessarily closed) subgroup of G.
- (2) $i = \rho m_K$ where K is a compact subgroup of G and $\rho \in K^{\hat{}}$.
- (3) K and $K_0 = \text{Ker}(\rho)$ lie within H_0 and are both normal in H_0 .
- (4) K is central in H_0 (mod K_0).
- (5) $\Omega = \{(\alpha, g) \in S \times G : \alpha \delta_g * \rho m_K \in \Gamma \}$ is a subgroup of $S \times G$ with $H_0 = \{g \in G : (\alpha, g) \in \Omega \text{ for some } |\alpha| = 1 \}$, and we have $\Gamma = \{\alpha \delta_g * \rho m_K : (\alpha, g) \in \Omega \}$.

Conversely, let H_0 be any subgroup of G, let K be a compact subgroup

of G lying within H_0 , and let $\rho \in K^{\hat{}}$ be chosen such that

- (1) K and $K_0 = \text{Ker}(\rho)$ are both normal in H_0 ,
- (2) K is central in $H_0 \pmod{K_0}$, and let Ω be any subgroup of $S \times G$ with $H_0 = \{g \in G: (\alpha, g) \in \Omega \text{ for some } |\alpha| = 1\}$. Then $\Gamma = \{\alpha \delta_g * \rho m_K: (\alpha, g) \in \Omega\}$ is a subgroup of $\Sigma_{M(G)}$ with $H_0 = \bigcup \{s(\mu): \mu \in \Gamma\}$, with $i = \rho m_K$ as a unit, and with $\Omega = \{(\alpha, g) \in S \times G: \alpha \delta_g * \rho m_K \in \Gamma\}$.
- 3. Norm decreasing homomorphisms of group algebras. Let F and G be locally compact groups and let $\phi \colon L^1(F) \to M(G)$ be a norm decreasing homomorphism. Consider on M(G) the (σ) -topology (weak * topology) and on M(F) the (so)-topology, which is defined to be the strong operator topology obtained by letting M(F) act by left convolution on the two-sided ideal $L^1(F)$. The structure theory for ϕ can be derived from the analysis of the subgroups of $\Sigma_{M(G)}$ because of the continuity properties of ϕ exhibited in the following theorem. Recall that the extreme points of $\Sigma_{M(F)}$ have (so)-dense convex span in $\Sigma_{M(F)}$.

THEOREM 6. Let F and G be locally compact groups and let $\phi: L^1(F) \to M(G)$ be any norm decreasing homomorphism. Then there is an extension $\phi: M(F) \to M(G)$ which is a norm decreasing homomorphism and is continuous on norm bounded sets as a mapping $\phi: (M(F), (so)) \to (M(G), (\sigma))$. If $\{e_i: j \in J\}$ is a left approximate identity of norm one in $L^1(F)$ then the extension is given explicitly by the formula

$$\bar{\phi}(\mu) = \lim \{ \phi(e_j * \mu) : j \in J \}$$

for $\mu \in M(F)$, where this limit is taken in the (σ) -topology.

If G is a locally compact group and we are given a subgroup Γ in $\Sigma_{M(G)}$, let us define $\tau: S \times G \to \Sigma_{M(G)}$ such that $\tau(\alpha, g) = \alpha \delta_g * \rho m_K$, where $i = \rho m_K$ is the unit of Γ , K is a compact subgroup of G, and $\rho \in K^{\hat{}}$. Then let us define

$$\Omega = \{ (\alpha, g) \in S \times G \colon \alpha \delta_g * \rho m_K \in \Gamma \},$$

$$\Omega_0 = \{ (\alpha, g) \in S \times G \colon \alpha \delta_g * \rho m_K = i \}.$$

Then $\tau: \Omega \to \Gamma$ is a continuous onto homomorphism with $\operatorname{Ker}(\tau) = \Omega_0$, so that Ω_0 is normal in Ω . We also define the canonical map $\pi: S \times G \to (S \times G/\Omega_0)_\tau$ (the right coset space), which is a homomorphism onto Ω/Ω_0 when restricted to Ω .

Now let $\phi: L^1(F) \to M(G)$ be a norm decreasing homomorphism with extension $\phi: M(F) \to M(G)$ as in Theorem 6, and with $\Gamma = \phi(\mathcal{E}_{M(F)})$

where $\mathcal{E}_{M(F)} = \{ \delta_x : x \in F \}$ in $\Sigma_{M(F)}$. Let us consider the map $\theta : F \to \Omega/\Omega_0$ defined such that $\theta(x) = \pi \circ \tau^{-1} \circ \overline{\phi}(\delta_x)$ for all $x \in F$.

PROPOSITION 7. The map $\theta: F \rightarrow \Omega/\Omega_0$ is an onto homomorphism and is continuous as a mapping $\theta: F \rightarrow (S \times G/\Omega_0)_r$.

We obtain an integral representation of ϕ by taking $\psi \in C_0(G)$ and forming $\tilde{\psi}: (\alpha, g) \rightarrow \langle \alpha \delta_g * \rho m_K, \psi \rangle$, so that $\tilde{\psi} \in C_0(S \times G)$ and is constant on right cosets of Ω_0 . Then we have $\tau^*\psi = \tilde{} \circ \pi^{-1} \in C_0((S \times G/\Omega_0)_r)$ and we have the following structure theorem.

THEOREM 8. Let F and G be locally compact groups and let $\phi: L^1(F) \to M(G)$ be a norm decreasing homomorphism which is not identically zero. Then if $\bar{\phi}: M(F) \to M(G)$ is its extension to M(F) and if $\Gamma = \bar{\phi}(\mathcal{E}_{M(F)})$, we have the relation

$$\langle \bar{\phi}(\mu), \psi \rangle = \langle \mu, \tau^* \psi \circ \theta \rangle$$

for all $\mu \in M(F)$ and $\psi \in C_0(G)$.

Conversely, if Γ is a given subgroup of $\Sigma_{M(G)}$ and if $\theta \colon F \to \Omega/\Omega_0$ is a continuous onto homomorphism, then the relation (*) defines a norm decreasing homomorphism Φ on M(F) which is continuous on norm bounded sets as a mapping $\Phi \colon (M(F), (so)) \to (M(G), (\sigma))$, and we have $\Gamma = \overline{\Phi}(\mathcal{E}_{M(F)})$.

More elegant structure theorems are available if $\phi: L^1(F) \to M(G)$ is a norm decreasing isomorphism. These results, together with proofs of the preceding theorems, will be published at a later date.

BIBLIOGRAPHY

- 1. P. Halmos, Measure theory, Van Nostrand, New York, 1950.
- 2. I. Glicksberg, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.
- 3. ——, Homomorphisms of certain measure algebras, Pacific J. Math. 10 (1960), 167-191.
- 4. R. M. Loynes, Fourier transforms and probability theory on noncommutative locally compact topological groups, Ark. Mat. 5 (1963), 37-42.

YALE UNIVERSITY