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Introduction. Let X = {1, x3, - - - } be a countably infinite topo-
logical space; then the space C*(X) of all bounded real-valued con-
tinuous functions f may be regarded as a space of sequences

(f(x1), f(x3), - + - ). It is well known [7, p. 54] that no regular (Toep-
litz) matrix can sum all bounded sequences. On the other hand, if
(%1, %2, - - + ) converges in X (to x), then every regular matrix sums

all fin C*(X) (to f(xm)).

The main result of this paper is that if a regular matrix sums all f
in C*(X) then it sums f to ) a,f(x,), for some absolutely convergent
series ), We use this to show that no regular matrix can sum all
of C*(X) if X is extremally disconnected (the closure of every open
set is open). This extends a theorem of W. Rudin [6], which has an
equivalent hypothesis (X is embeddable in the Stone-Cech compac-
tification BN of a discrete space) and concludes that not all f in
C*(X) are Cesaro summable.

For any continuous linear functional ¢ on C*(X) one has a (“Riesz”)
representation ¢(f) = [fdu, where u is a Radon measure on 8X. Our
main result is just that X supports u; u is forced to be atomic since
X is countable. We show further that X has a subset T, the set of
heavy points, such that the functionals we are concerned with corre-
spond exactly to measures u supported by T with u(7)=1. Our
knowledge of T is limited; it will be summarized elsewhere.

1. Representation. It is well known [7, p. 57] that a matrix
A = (a;;) defines a regular summability method if and only if it satis-
fies the conditions (1) X_;ai;=140(1), (2) 2, |a,~,~] is uniformly
bounded, and (3) for each j, a;;—0.

For all the present results on real-valued functions, we may assume
without loss of generality that our topological spaces are completely
regular. Then each countable space X has a base of open-and-closed
sets, and each f&(C*(X) is a uniform limit of linear combinations of
characteristic functions of these basic sets.

Suppose that A4 is a regular matrix such that ¢4(f)
=limi.., 2;a:jf(x;) exists for each f&EC*(X). For each open-and-
closed subset U of X, let cy denote its characteristic function, and let
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a(U)=¢a(cy). Also, let b(U)=sup ZIa(V,-)I, where {V;} ranges
over all finite disjoint families of open-and-closed subsets of U. A
bound for D_; |as| is a bound for b(U); also a and b are finitely addi-
tive.

For each point x& X, let a(x) be the limit of a(U) over the filter
base U, of open-and-closed neighborhoods of x. It exists since the
monotone function 5(U) converges, which implies that

lim{o(U ~ U"): U, U' € U, U' C U} =0,
so |a(U)—a(U")| =|a(U~U")| £b(U~T").
LEMMA. The series »_o(x,) is absolutely convergent with sum 1.

Proor. For any €>0, there exist U,&EU,,, for =1, 2, - - -, such
that for any V,EU,, satisfying V,CU,, 2.b(U.~V,)<e. Thus
! > a(U,) — Za(xn)l =<e¢, and with a further error of ¢, we can re-
place the sets U, by a disjoint family {W,.} covering X. Then ab-
solute convergence is evident; and if D a(x,)#1, we may choose
€>0 so small that Za(Wn) =1—d with d#0.

Let af= D [an: x: EW;]; note that lim; aj;=a(W;). Let

*
ai; — a(W;) ‘
d

Then (c;;) is regular since (1) and (3) hold, and Y_; |c,~,~| is bounded
by 2/|d| times the bound for )_;|as|. Since no regular matrix
can sum all sequences of zeros and ones [7, p. 54], there is a subset
Z of N such that ez ¢i; does not converge, so W=U { W,: nEZ}
is an open-and-closed set for which a(WW) does not exist. This contra-
diction establishes the lemma.

Cij =

COROLLARY. For any open-and-closed set U, D_[a(x): xE U] =a(U).

Proor. Passing to (X~U) if necessary, we may assume that
a(U)£0. The matrix (b;;) obtained by letting b;;=a.;/a(U) if x,&E U,
and by letting b,;;=0 otherwise, is a regular matrix that sums each
element of C*(U), so the lemma applies.

THEOREM 1. If a regular matrix summability method ¢ sums all
bounded continuous functions on a countably infinite topological space
X= {xl, Ko, ¢ ¢ ¢ }, then there is an absolutely convergent series Ea,.
with sum 1 such that for each fEC*(X), ¢(f) = 2 nf(x,).

Proor. The corollary shows this for characteristic functions and
the rest follows from linearity and continuity.
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2. Reduction to points. As indicated in the introduction, we can re-
duce the problem of which functionals f— > a,f(x,) are given by
regular matrices to the problem for single points, f—f(x). There is a
further reduction to the case that x is the only nonisolated point.
(Obviously ¥ must be nonisolated.) We define a heavy point x of a
countable space {x1, #s, - - - } as one such that there exists a regular
matrix 4 such that for every bounded function f continuous at x,

b4(f) =f(x).

THEOREM 2. A functional ¢(f) = D anf(x,) on C*(X) is representa-
ble as ¢4 for some regular matrix A if and only if Do, =1 and a,=0
whenever x, is not a heavy point.

The proof will be published elsewhere, together with the results
abstracted in [4], which tell a little about heavy points. It is easy to
see that the limit of a convergent (nonconstant) sequence is a heavy
point; another heavy point that is not the limit of a sequence is ex-
hibited, essentially, in [3, Example 3.3].

3. Removable points. A point x for which every function
feC* (X~ {x}) has an extension in C*(X) cannot be a heavy point;
for the matrix 4 summing C*(X) (¢4(f) =f(x)) would, with one col-
umn deleted, sum all of C*(XN{x}) (¢4 violating Theorem 1). As
the omitted proof of Theorem 2 is long, we note that this argument
works as well with ¢4(f) = Zan f(xn), if x =x, has a nonzero coefficient
a,; that is, Theorem 1 suffices. Moreover, there is a trifle of extra
information; if 4 sums every f in C*(X) to Y a.f(x,), and an0,
then there is a bounded function discontinuous only at x, that 4
fails to sum.

A subspace Y of a completely regular space X is said to be C*-
embedded if every fEC*(Y) has an extension in C*(X). It is well
known [2, p. 23] that a space X is extremally disconnected if and
only if each of its dense subspaces is C*-embedded. Thus, from
Theorem 1 and the above, we have

THEOREM 3. If the complement of each point of a countably infinite
space X is C*-embedded, in particular, if X is extremally disconnected,
then no regular matrix can sum every element of C*(X).

The complement of every point of X may be C*-embedded without
X being extremally disconnected. For example, identify two copies
of a countable extremally disconnected space along a closed dense in
itself subspace.

In [6], W. Rudin proved that if X is a countable subspace of 8N,
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there is an f&EC*(X) that is not Ci-summable. Any such X is ex-
tremally disconnected; indeed every subspace of a countable sub-
space of BN is C*-embedded [2, p. 97]. Every countable extremally
disconnected space takes this form; in fact

Every extremally disconnected space X having a dense subspace of
power m can be embedded in BD, where D is a discrete space of power m.

Proor. There is a mapping 7 of D onto a dense subspace ¥ of X
which has a continuous extension over 8D onto 83X [2, p. 86]. Let E
be a closed subspace of 3D minimal with respect to the property of
being mapped onto X by 7. Gleason shows in [1] that the restriction
of 7 to E is a homeomorphism since 83X is extremally disconnected
[2, p. 96].

This easy application of Gleason’s theorem answers a question of
Katétov, who asked if every extremally disconnected space, every
subspace of which is normal, can be embedded in 8D for some dis-
crete space D [5].
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