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Introduction. I t has been known for a long time that the Wiener 
integral can be effectively used in studying various properties of the 
Schrödinger operator A— V(x) where A = d2/dxl + ' ' ' +d2/dx2

n, the 
Laplacian in m-dimensional Euclidean space Em and V(x) is a real-
valued function on Em satisfying certain regularity conditions. For 
example, see works by Kac [6], Getoor [2; 3] , Ray [9] and Nel­
son [8]. 

Getoor [2] was the first to point out the connection between a 
Wiener type integral and the perturbation theory of certain oper­
ators of the form Q — V(x) where 0 is the infinitesimal generator of a 
homogeneous Markov process on a locally compact metric space X 
and V(x) is a real-valued Borel measurable function on X, bounded 
on bounded sets and bounded below everywhere. When X — Em and 
the Markov process is a suitably normed Wiener process,2 12= A and 
his results apply to the Schrödinger operator A— V(x). 

In this paper we will only consider the case X = Em and Q — A but 
V(x) will be allowed to have certain singularities precluded by 
Getoor's conditions on V. For example, we can consider the perturba­
tion of A+e/r, where X = EZ and r= (x2-\-y2+z2)112, i.e., the Schrödin­
ger operator with attractive Coulomb potential. In particular the 
essential condition on V(x) is that A — V is semi-bounded above on a 
certain dense domain D in L2(£w) , the Hubert space of complex-
valued square summable function on Em.z 

Main results. In this section we will introduce some notation, state 
our theorems and corollaries, sketch one proof and remark on the 
remaining proofs. 

Co(Em) will denote the space of infinitely differentiable, complex-
valued functions on Em with compact support. Let Ll™(Em) denote 

1 The preparation of this paper was sponsored in part by the National Science 
Foundation. 

2 In particular we assume a2 = 2 where a2 is the variance per unit of time of the 
Wiener process. See [6]. 

3 DEFINITION. A symmetric operator A with domain DÇ-L2(Em) is said to be semi-
bounded from above if there exists a real number k< oo such that (A^, ^)^k{\p, \j/) 
s&| |^ | |2 for all ^ £ £ > and where (</>, xl/)=f<f>^dx. 
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the space of complex-valued functions on Em which are square sum-
mable on every compact subset of Em. We will assume as known the 
definition and properties of a Wiener process on Em and the related 
integration (Wiener integral) theory. In particular if F(-) is a meas­
urable functional over Wiener space then E(F(-)\x(0)=x) will de­
note the Wiener integral (expectation) of F over the Wiener process 
which begins at x at time 0, if the integral exists.4 

We also assume as known the concept of a set of capacity zero.5 

We can now state the main results. 

THEOREM 1. Let V(x) be a real-valued function on Em which is in 
L2

0C(Em) and is continuous except for a set Q of capacity zero. Suppose 
further that 

((A - V)*, f) ^ *(*, f) 

for ^GC^(jEm) and k< <*>, independent of\[/. Then, for ^£Z,2GEm), 

(TV
t^)(x) = E ^ e x p T - ƒ V{x{r))dr\^{x{t)) | *(0) - xj 

exists and defines a strongly continuous self-adjoint semi-group of oper­
ators on L2(Em) whose infinitesimal generator is a self-adjoint extension 
A — V considered as an operator on CQ (Em). 

SKETCH OF PROOF. Let 

(V(x) iîV(x)> -N, 
VN(OC) = < 

l - t f iîV(x)^-N 
which is in L2

0G(Em) and is continuous except for a set of capacity 
zero. I t then follows from a theorem of Getoor [2] and the general 
theory of self-adjoint semi-groups [4, § 22.3] that TjN is a strongly 
continuous self-adjoint semi-group on L2(Em) whose infinitesimal gen­
erator is the self-adjoint extension of A — VN considered as a sym­
metric operator on CQ (Em).6 Since 

((A - VN)*> iW S ((A - F)*, *) ^ *(*, 1« 

the spectrum of the self-adjoint extension of A— VN is Sk and thus 
from the spectral representation of TjN we have 

4 See Kac [ô], Getoor [2] and Nelson [8] for a pertinent discussion of Wiener 
space, Wiener integral, etc. 

5 See Nelson [8] for a brief discussion of this subject. 
6 Results of Ikebe and Kato [5] assure us that A— VN is essentially self-adjoint 

with domain C (Em). 
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(i) K l u s - " 
where || ||op is the standard operator norm. 

Moreover for ^£Z,2(Em), xQ-Q, we have by the monotone con­
vergence theorem that 

(ft" \f I )(*) = E (exp[- ƒ Vw(x(r))<fr] | *(*(/)) | | *(0) = *) 

Î E ^ e x p ^ - ƒ V(x(r))<Zr] | *(*«)) | | *(0) - *) 

= (rIU|)(x) 
where the convergence is pointwise (in x). Since a set of capacity zero 
has measure zero, we have pointwise almost everywhere convergence 
of Tj»\i>\ to r f | ^ | . T h u s 

[(rf'kl )(*)]* î [(rn*|)<*)]' 
almost everywhere and from (1) we have 

ƒ [{T?U\){x)]2dx Î ƒ [ r l | * | (x)]2dx g e^. | |^ | |2 . 

From this we conclude that 7 7 | ^ | &L2(E
m) and hence TfyEU(Em). 

From the definition of Tj^ and 2 ; we see that 

I (!?»(*) - (2Ï*)(*) |* £ 4[(r[U| )(*)]' 
and thus 

(2) llrlV-r.Vll-^o 
as iV—> oo. Summing up the preceding results, we have shown that 
Tjyp, \pGL2(Em), exists and is the limit of the TjN in the strong oper­
ator topology (from (2)) for each t. 

To complete the proof one shows that the range of the resolvent 
of Tj contains C<$°(Em) and thus from the general theory in § 22.3 
of [4] we will have that Tj is a strongly continuous (on [0, 00)) self-
adjoint semi-group of operators on L<i{Em). That the infinitesimal 
generator of Tj extends A — V on CQ (Em) will follow from the discus­
sion of the range of the resolvent of Tj. 

REMARK 1. From now on A— F will be used to denote the infinitesi­
mal generator of Tj. This notation in general is ambiguous but for 
most applications A— V, with domain C0°°(Em), is essentially self-
adjoint and thus its use seems justified. (See [S].) 
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THEOREM 2. Let g(x) and h(x) be functions which satisfy the condition 
of Theorem 1. Let Vn(x), n~ 1, 2, • • • , be a sequence of real-valued 
Borel measurable functions on Em. Suppose that g(x)^Vn(x)Sh(x)> 
n~ 1, 2, • • • and limWH-co Vn(x) = V(x) except for a set of capacity zero. 
Then 

lim TV
t
n = TV

t 
n—>oo 

iw tó# strong operator topology for each t and Tj is a strongly continuous 
self-adjoint semi-group whose infinitesimal generator is a self-adjoint 
extension of A—V considered as a symmetric operator on Co(Em). 

COROLLARY 3 (GETOOR-RELLICH). Let Vn, V be as in Theorem 2. 
Denote by {E"}, — oo <X < oo, the spectral resolution of the identity for 
the infinitesimal generator of Tjn, n—l,2,---y and {E\}, — oo <X 
< oo, the spectral resolution of the identity for the infinitesimal generator 
of Tj. Then 

in the strong operator topology for points of continuity of Ex. 

COROLLARY 4. Given ^ £ £ 2 CE1*) and Vn{x), V(x) as in Theorem 2. 
Let \l/n(x, t) be the L2 solution of Schrödinger's equation 

== i(A - F»(*))^n(*, t) 
dt 

and \p(x, t) the L2 solution of 

— = i(A - V(x)Mx, t) 

where the initial condition is 

*»(*, 0) s f(x, 0) s= f(x). 

Then 

| | ^ 0 , t) — iK#, 0|| "~* 0 as n -> oo 

uniformly in t for bounded t intervals. 

THEOREM 5. Let Cg be an open disc of radius 8 about 0 and let V(x, e) 
be a complex-valued function on Em such that 

(1) V(x, e) is real f or real e and is analytic in Chfor each x except 
perhaps for a set Q of capacity zero. 

(2) V(x, e) is continuous except f or a set of capacity zero f or each e 
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(3) Re V(x, e) ^g(x), where g(x) satisfies the conditions of Theorem 1. 
(4) |{ZF(tf, e)/de\ Sh(x) for xQQ and h(x) continuous except f or a 

set of capacity zero. 
Then TjM is analytic in Cd for each t. 

COROLLARY 6. Let A be an eigenvalue of (A— V(x, 0)) where V(x, e) 
satisfies conditions of Theorem 5. (See also, Remark 1.) Suppose X has 
multiplicity m, l ^ m < o o . Then there exist m real analytic functions 
Xi(e) and m analytic vector-valued f unctions <j>i{x, e) analytic for —rj<€ 
<rj, r] some number > 0 and such that 

(A — V(x, e))(j)i(x, e) = Xi (e )<^0 , e) 

i = l, • • • , m and —rj<e<r]. 

REMARK 2. The proof of Theorem 2 is essentially a dominated con­
vergence argument. The proof of Corollary 3 is exactly as in [2], 
corollary to Theorem 5.2. The proof of Corollary 4 uses the Levy-
Cramer Theorem which concerns the continuity of the Fourier trans­
form of measures. Theorem 5 is a straightforward argument showing 
the analyticity of an abstract integral of a functional which depends 
analytically on a parameter e. Corollary 6 is a direct application of a 
theorem of Rellich and Sz.-Nagy [10, p. 376]. See [ l l ] and [12] for 
some concrete examples of V(x, e) to which Corollary 6 applies. 

REMARK 3. The above theorems extend directly to Schrödinger 
operators on L2CR) where R is an m-dimensional, connected subset of 
Em with a reasonably smooth boundary dR. In this case we would 
require the zero boundary condition on dR. 

Applications and detailed proofs will be given elsewhere. 
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DISTRIBUTION MODULO 1 AND SETS OF UNIQUENESS 

BY J . -P . KAHANE AND R. SALEM f 

Communicated by A. Zygmund, July 6, 1963 

A linear set E C ( 0 , 1) is said to be a set of uniqueness (set U) for 
trigonometric expansion if no trigonometric series exists (except van­
ishing identically) which converges to zero in the set CE complemen­
tary to E. Following Nina Bary we shall say that E is a set of unique­
ness "in the wide sense" (set U*) if no Fourier-Stieltjes series exists 
(except vanishing identically) which converges to zero in CE. If £ is 
a closed set £7* it means (see [l, Vol. 1, pp. 344-359, Vol. 2, p. 160]) 
that E does not carry any measure whose Fourier-Stieltjes coefficients 
tend to zero. If £ is a closed set U (i.e. of uniqueness "strict sense") 
it means that E does not carry any measure or pseudo-measure (cf. 
[2]) with coefficients tending to zero. 

DEFINITION. A real sequence of numbers {uK} " will be said to be 
"badly distributed" modulo 1 if there exists at least one character­
istic function X(x) of open interval AC(0 , 1) periodic with period 1 
such that 

X(uQ + • • • + X(uK) ƒ* 
hm sup < I X{x)dx = I A I 

K = 00 K J 0 

when IAI stands for the length of A.1 

REMARK. I t is easy to see that under this hypothesis there exists a 
A with rational end-points having the same property. 

THEOREM. Let E<Z(0, 1) be a linear set such that there exists an in­
finite sequence of positive integers {nK} " increasing to infinity, with the 

t Professor Salem died June 20, 1963, in Paris. 
1 The reader will convince himself that all the argument which follows is applicable 

in the case we suppose lim inf >A. 


