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Particular solutions of nonlinear differential equations have been 
used successfully to achieve analytic simplification of systems of linear 
differential equations [7; 8]. In this note we will show that similar 
results are possible for systems of linear difference equations. To the 
author's knowledge, this is the first time this technique has been em­
ployed for difference equations. 

We are concerned with the system of linear difference equations 

(1) y{x + 1) = xliA(x)y(x)) 

where y is a vector with n components, ix is an integer, and A (x) is 
an n by n matrix with elements analytic in a neighborhood of x = oo : 

00 

^0*0 =* £ A8x~*, \x\ > p, AojéQ. 

The most effective manner for determining the solutions formally3 

is to reduce the difference equation (1) into k systems of the same 
type and of lower order by a formal transformation4 of the form 

(2) y(x) = T(x)z(x) 

where 
00 

T(x) = YL T9x~9 (formally), det. To ̂  0. 
«»o 

More precisely speaking, let the resulting equation be 

z(x + 1) = C(x)z(x) 

where Tix) has been constructed so that C(x) has the block diagonal 
form 

C(x) « ( d W , C2(*), • • • , C*0))> 
with 

00 

d(x) = 0* 2 Co*-*, do = \ili + Ni. 
y-o 

1 Supported in part by the National Science Foundation under Grant G-1891S. 
2 Supported in part by a contract of the Office of Naval Research, Nonr-3776(00). 
8 For the direct construction of formal solutions see [l; 2; 3]* 
4 For the construction of the formal transformation and the resulting canonical 

form see [9; 10 ]. 
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Here /x$- are integers, X» are constants, /< are unit-matrices, Ni are 
nilpotent matrices, and txi—fij implies X»5̂ Xy. 

The formal transformation T(x) will in general be divergent, but in 
appropriate sectors of the #-plane desirable analytic properties are 
available which in turn will also be available for C(x), since 

C(x) - afT-ifr + l)A(x)T(x). 

In this note we establish the following result. 

THEOREM. Let the elements of the nbyn matrix A (x) be analytic for 
\x\ >p, A(x)— ]Cs°̂ o A&r9, i4o = -4(oo)^0 and let the matrix A0 have 
the block diagonal form 

Ao = diag (Ah • • • , Ap) 

where the eigenvalues X# of A° satisfy the conditions 

I X*vi = | x , i | ; | x t 7 | ^ | x * i | ; i * h. 

Then there exists a matrix T(x) with elements analytic for I m # ^ i ? > 0 
and lm xS—R<0 if Ris sufficiently large for which 

T~l{x + l)A(x)T(x) = B(x) = diag (B^x), • • , B*(x)). 

Further T(x) has the asymptotic representation 
00 

r(*)s/+ Z7>-* 
for the regions Im x^R>0 and Im x^ —R<0, hence 

00 

B(x) S X) B9*r\ Bo = Ao. 

If we assume further that A 0 is a diagonal matrix (or reducible in 
the sense of [5]), the results of the authors [6] give the following 
corollary. 

COROLLARY. If A o is diagonal, the block diagonalization of the theo­
rem may be refined so that different blocks correspond to distinct eigen­
values of the matrix A o with B{x) having asymptotic representations in 
the sectors 

| Im x | ^ R, | arg x — kit \ S €, c > 0, k = 0, 1. 

PROOF OF THE THEOREM. We assume without loss of generality that 
A*j is in Jordan canonical form 
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As 

àjmj—1 

Ai 

y = i, >p, 

^jmj -J 

with ôjh arbitrary small. 
Let r(x)=I+<2(x), A(x)=Ao+Â(x) and B(x)=A0+F(x). Then 

T"1(x+l)A(x)T(x)=B(x) becomes 

(4) 
AQ(x)Ao = iloö(*) - Q(*Mo + A(x)Q(x) - Q(x)F(x) + A(x) 

- F{x) - AQF(x) 

whereAQ(x) = Q(x+l)-Q(x). Put 

An • • • Âip' 

A = 

Q-

L Api * • • App J 

0 Cu Ö18 

Ö21 0 Ç23 

L 0 

0 

FPA 
QIP' 

Q>P 

.Qpi • • • QPP-I 0 J 

Then F /=4 ,y+Z) 
8̂ / AjaQsj and the equation for determining Ç be­

comes 

(5) 

A0y.il.0 = £<h» ~ Q,:A°,+ E AihQh. - {AQj. + Q„) 

\Aa9 + X il.*ö*.> + Ai9. 

Assume, if necessary (i.e., some zero eigenvalues), that 4̂? is singular. 
If Q is determined in this manner, then T and F are also determined. 
Equation (5) is a system of nonlinear difference equations. Hence we 
are led to the following problem : 

Let y and z be a and j3 dimensional vectors respectively and consider 
the following nonlinear difference equation 

Ay « M y , * , Ay), 

CoAz = M y, s, As), 
(6) 

where 

ƒ = Mx) + PQy + M y> *> Ay), g = #>(*) + Cos + M y, z, A»); 

A0y.il.0
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Po and Qo are nonsingular constant matrices, Co is a constant singular 
matrix whose eigenvalues are all zero andfo, g0, ƒ, and £ are of the form 
0(x~~l) ; construct a solution of (6) which has an asymptotic representa­
tion in powers of x"1 in an appropriate sector. 

We obtain such a solution by showing the existence of a fixed point 
of a mapping in a certain function space. 

The inequality |X#| 5̂  | Azm| iij^l allows us to write 

(7) Po + I L 0 p2J 

where the eigenvalues of P i and P2 have absolute value less than and 
greater than one respectively. 

Let 

correspond to the partitioning (7). Then the existence of T(x) is 
equivalent to the existence of a fixed point of the mapping 

r<t>r 
02 

U-
—» 

" y i l 

y* 

- Z J 

D), 

which is defined as follows: 

yi(x) = /oi(* - 1) + Pi*i(* ~ 1) 

+ / i ( * - 1, <K* ~ 1), iK* - 1), A0(# 

y2(«) = P2_1{ -/oo(^) + «M* + 1) —MX> *(*)> lK*)> A^(*))}, 

*(*) = - eo"x{«o(*) - CoA^ + £(x, *(*), *(*), A*(*))}. 

Let g be the set of all vector-valued functions 

r *i(«) ' 

whose components are holomorphic f or Im x > R > 0 (or Im x < — R < 0) 
and satisfy the inequality 

| |*(*)| | ^ M* 

5 The norm of the vector y with components y\ • • • yn is defined by ||y|| =*]CLil ?<l 
If -4 is an n by n matrix the norm of A is defined by ||i4|| -sup{| | i4y| | ; ||y|| - 1 } . 
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where M is an arbitrary but fixed constant not depending on $. % 'ls 

closed, compact, and convex with respect to the topology of uniform 
convergence on each compact subset of the indicated region. Since 
the mapping is continuous we only need to show that g is mapped 
into g. 

If the 8jk in (3) are sufficiently small we have 

HPJI < 1, UiVil < 1, and ||Qo-xCo|| < 1. 

Utilizing this fact, we can choose R so that % is mapped into $. Thus 
we can establish the existence of a bounded solution of (6). The 
asymptotic properties of this solution can be proved in a manner 
analogous to the proof of case (5) in [ó] and will be omitted. 

We note that the results of the theorem are valid if we replace the 
condition that the elements of A(x) are analytic for \x\ > p by the 
condition that A{x) is analytic for | Im x\ > p and has an asymptotic 
expansion A fa)==yi,°ln Asx~8. 

Further results pertaining to properties of particular solutions of 
nonlinear difference equations will simplify and extend results for 
linear systems of difference equations. For example, the Borel sum-
mability of solutions of linear systems of difference equations may be 
studied conveniently if the Borel summability of the transformation 
T(x) can be established [4; 5]. 
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